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Abstract. We present a novel dedicated hardware system for the extraction of 
second-order statistical features from high-resolution images. The selected fea-
tures are based on gray level co-occurrence matrix analysis and are angular 
second moment, correlation, inverse difference moment and entropy. The pro-
posed system was evaluated using input images with resolutions that range 
from 512×512 to 2048×2048 pixels. Each image is divided into blocks of user-
defined size and a feature vector is extracted for each block. The system is im-
plemented on a Xilinx VirtexE-2000 FPGA and uses integer arithmetic, a 
sparse co-occurrence matrix representation and a fast logarithm approximation 
to improve efficiency. It allows the parallel calculation of sixteen co-
occurrence matrices and four feature vectors on the same FPGA core. The ex-
perimental results illustrate the feasibility of real-time feature extraction for in-
put images of dimensions up to 2048×2048 pixels, where a performance of 32 
images per second is achieved. 

1   Introduction 

The second-order statistical information present in an image relates to the human 
perception of texture. It has been successfully utilized in a variety of machine vision 
systems, including biomedical [1,2], remote sensing [3], quality control [4], and in-
dustrial defect detection systems [5].  

A well established statistical tool that captures the second-order statistical informa-
tion is the co-occurrence matrix [6].  The calculation of the co-occurrence matrix has 
a complexity of only O(N2) for an input image of N×N-pixel dimensions, but the 
calculation of multiple matrices per time unit increases the processing power re-
quirements. Using software co-occurrence matrix implementations running on con-
ventional general-purpose processors does not enable real-time performance in a 
variety of applications, which require a high number of calculated matrices per time 
unit. Such demanding applications in the field of image processing include analysis of 
video streams [1,6], content-based image retrieval [7], real-time industrial applica-
tions [5] and high-resolution multispectral image analysis [2]. 



Field Programmable Gate Arrays (FPGAs) are high-density reconfigurable devices 
that can be hosted by conventional computer hardware [9]. They enable the rapid and 
low cost development of circuits that are adapted to specific applications and exploit 
the advantages of parallel architectures. A dedicated hardware system that efficiently 
computes co-occurrence matrices in parallel can meet the requirements for real-time 
image analysis applications. The Very Large Scale Integration (VLSI) architectures 
[10] provide an alternative to the FPGAs, but have drawbacks such as higher cost and 
time-consuming development. Furthermore, they cannot be reconfigured. 

Within the first FPGA-based systems dedicated to co-occurrence matrix computa-
tions, was the one presented in [5,11]. It involves the computation of two statistical 
measures of the co-occurrence matrix. Moreover, the measures are extracted indi-
rectly, without calculating the co-occurrence matrix itself. A later work by Tahir et al. 
[2] presents an FPGA architecture for the parallel computation of 16 co-occurrence 
matrices. The implementation exploits the symmetry, but not the sparseness of the 
matrices, resulting in a large FPGA area utilization. This leads to the need of a sepa-
rate core for the feature calculation. Thus, the system is capable of processing high-
resolution images, but does not achieve real time performance. 

In this paper, we present a novel FPGA based system that allows the parallel com-
putation of 16 co-occurrence matrices and 4 feature vectors. The dedicated hardware 
exploits both the symmetry and the sparseness of the co-occurrence matrix and uses 
an efficient approximation method for the logarithm, enabling real-time feature ex-
traction for input images of dimensions up to 2048×2048 pixels. Furthermore, the 
system comprises of a single core for both the co-occurrence matrix and the feature 
calculation. Thus, no overhead is incurred by reprogramming cores onto the FPGA in 
order to calculate the feature vectors. 

The paper is organized in five sections. Section 2 refers to the second-order statis-
tical features and their integer arithmetic formulation. The architecture of the pro-
posed system is described in Section 3. Section 4 presents the experimental results 
that demonstrate the system performance. The conclusions of this study are summa-
rized in Section 5.   

2   Second-Order Statistical Features 

The co-occurrence matrix of an N×N-pixel image block, encodes the gray-level spa-
tial dependence based on the estimation of the second-order joint-conditional prob-
ability density function Pd,θ(i, j). It is computed by counting all pairs of pixels of an 
image block at distance d having gray-levels i and j at a given direction θ.  
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where 
),(, jiCd θ  = # {(m, n), (u, v) ∈ N×N: f(m, n) = j, f(u, v) = i, |(m, n)-(u, v)| = d, 

∠((m, n), (u, v)) = θ}, # denotes the number of elements in the set, f(m, n) and f(u, v) 
correspond to the gray-levels of the pixel located at (m, n) and (u, v) respectively, and 



Ng is the total number of gray-levels in the image [6]. We choose Ng = 32 (5-bit rep-
resentation).  

The co-occurrence matrix can be regarded symmetric if the distribution between 
opposite directions is ignored. The symmetric co-occurrence matrix is derived as 

( ) 2/),(),(),( ,,, ijPjiPjiP ddd θθθ += . Therefore, the co-occurrence matrix can be 
represented as a triangular structure without any information loss, and θ is chosen 
within the range of 0° to 180°. Common choices of θ include 0°, 45°, 90° and 135° 
[1,2,6,12]. 

Moreover, depending on the image dimensions, the co-occurrence matrix can be 
very sparse, as the number of gray-level transitions for any given distance and direc-
tion, is bounded by the number of image pixels. 

Out of the 14 features originally proposed by Haralick et al. [6] we have consid-
ered four, namely angular second moment (f1), correlation (f2), inverse difference 
moment (f3) and entropy (f4):  
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where μx, μy, σx and σy are the means and the standard deviations of the marginal prob-
abilities Px(i) and Py(j) obtained by summing the rows and columns of matrix 

),(, jiPd ϑ  respectively. These four measures have been shown to provide high dis-
crimination accuracy that can only be marginally increased by adding more features 
to the feature vector [1], [13]. 

The calculation of the four measures requires floating point operations that result 
in higher FPGA area utilization and lower operating frequencies. To implement the 
calculation of the measures efficiently in hardware, we have extracted five expres-
sions that can be calculated using integer arithmetic: 
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The logarithm in Eq. (9) is approximated using the novel method described in Section 
3.2, whereas IDMLUT is a 32×32-bit Look Up Table used for the calculation of the 
Inverse Difference Moment. The result of the calculation in hardware is a vector 

],,,,[ 54321 VVVVVV =  that is used for the calculation of the four Haralick features 
through the use of the following equations: 
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Eqs. (14)-(17) are executed in software. The computation of these equations incurs a 
negligible overhead to the overall system performance. 



3   System Architecture 

The architecture of the proposed system was developed in Very High Speed Inte-
grated Circuits Hardware Description Language (VHDL). It was implemented on a 
Xilinx Virtex-XCV2000E-6 FPGA, which is characterized by 80×120 Configurable 
Logic Blocks (CLBs) providing 19,200 slices (1 CLB = 2 slices). The device includes 
160 256×16-bit Block RAMs and can support up to 600kbit of distributed RAM. The 
host board, Celoxica RC-1000 has four 2MB static RAM banks. The FPGA and the 
host computer can access the RAM banks independently, whereas onboard arbitration 
and isolation circuits prohibit simultaneous access. 

The system architecture is illustrated in Fig. 1. The FPGA implementation includes 
a control unit, four memory controllers (one for each memory bank), 16 Co-
occurrence Matrix Computation Units (CMCUs) and four Vector Calculation Units 
(VCUs). Each input image is divided into blocks of user-specified dimensions and 
loaded into a corresponding RAM bank using a 25-bit per pixel representation. Each 
pixel is represented by a vector ],,,,[ 13590450 aaaaaa p=  that comprises of five 5-bit 
components, namely, the gray-level ap of the pixel and the gray-levels a0, a45, a90 and 
a135 of its neighboring pixels at 0°, 45°, 90° and 135° directions. 
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Fig. 1. Overview of the system architecture 

All FPGA functions are coordinated by the control unit, which generates synchro-
nization signals for the memory controllers, the CMCUs and the VCUs. The control 
unit also handles communication with the host, by exchanging control and status 
bytes, and requesting or releasing the ownership of the on-card memory banks. The 
system includes 16 CMCUs that are grouped in four quadruplets. Each CMCU in the 
quadruplet reads the vectors a  that represent an image block from one of the memory 



controllers and computes the GLCM for a single direction. The 16 CMCU outputs of 
the four quadruplets are connected to the four VCUs that calculate the vectors V  
from the GLCMs. These vectors are written to the on-card memory through the mem-
ory controllers. 

3.1   Co-occurrence Matrix Computation Units 

Considering the requirements of the proposed application, the CMCU was developed 
to meet three main objectives: small FPGA area utilization, high throughput per clock 
cycle and high frequency potential. The small area utilization allows the implementa-
tion of the four VCUs on the same core, whereas the high throughput and frequency 
ensure the high efficiency of the design. To meet these three objectives we have con-
sidered various alternatives for the implementation of the CMCUs. These include the 
utilization of the existent FPGA BlockRAM arrays, the implementation of standard 
sparse array structures that store pairs of indices and values, and the implementation 
of set-associative [14] sparse arrays. The BlockRAM arrays and the standard sparse 
array structures would not suffice to meet all three objectives. The BlockRAM arrays 
would lead to larger area utilization, compared with the sparse implementations, 
whereas the standard sparse arrays would result in a lower throughput, compared with 
the other implementations, as the cycles needed to traverse the indices of the array are 
proportional to its length. In comparison, the set-associative arrays could be consid-
ered as a more flexible alternative that can be effectively used for achieving all three 
objectives. 

Every CMCU is implemented by means of an n-way set-associative array of Nc 
cells and auxiliary circuitry, which include n comparators, an n-to-log2n priority en-
coder and an adder. The set-associative arrays can be utilized for efficient storage and 
retrieval of sparse matrices, ensuring a throughput of one access per cycle with a 
latency of four cycles. An n-way set-associative array consists of n independent tag 
arrays (tags0 - tagsn-1). The tag-arrays are implemented in the distributed RAM of the 
FPGA and each of them consists of Nc/n cells. The set-associative array uniquely 
maps an input pair of 5-bit gray-level intensities (i, j) into an address of the Nc-cell 
data array. The data arrays are implemented using FPGA Block RAMs, each of which 
can hold up to 256 co-occurrence matrix elements. The data array cells contain the 
number of occurrences of the respective (i, j) pairs. 

The circuit is implemented as a four-stage pipeline. In the first two cycles the cir-
cuit reads an input pair of gray-level intensities (i, j) and maps it to the address of the 
BlockRAM cell that stores Cd,θ(i,j). In the next two cycles the value of Cd,θ(i,j) is 
retrieved and incremented by one. The necessary forwarding circuits are imple-
mented, ensuring a stall free operation of the pipeline regardless of the input data, 
thus guaranteeing a throughput of one update operation per cycle with a latency of 
four cycles. After all input pairs (i,j) have been read and the corresponding cells have 
been updated, the unit outputs the computed GLCM. 



3.2   Vector Calculation Units 

The Vector Calculation Unit receives a GLCM computed by a CMCU and calculates 
the ],,,,[ 54321 VVVVVV =  (Eqs. 6-10) vector. The resulting vector is written to a bank 
of the on-card memory through the corresponding memory controller. The calculation 
of V1 to V4 is implemented in four independent pipelined circuits. The pipeline stages 
for each circuit are a preprocessing stage, calculation stages, a postprocessing stage 
and an accumulation stage. The preprocessing and postprocessing stages facilitate the 
operations needed to calculate the V1 to V5 from the lower triangular representation of 
the GLCM. In the preprocessing stage, the elements of the diagonal of the GLCM are 
doubled and in the postprocessing stage the intermediate results of the computation 
are multiplied by two for all elements that do not belong to the diagonal. The calcula-
tion stages involve arithmetic operations such as addition, multiplication and subtrac-
tion. The output of each postprocessing stage is accumulated in a register during the 
accumulation stage. 

The calculation of V5 (Eq. 10) is implemented in two separate pipelined circuits. 
The first pipeline has two stages and uses a 64×16-bit BlockRAM for the storage of 
Cx(i). At the first stage, the previous value of Cx(i) is read from the BlockRAM and at 
the second stage it is incremented by Cd,θ(i,j) and stored back to the memory. A for-
warding circuit ensures correct operation of the pipeline without stalls. The second 
pipeline is activated when all values Cd,θ(i,j) have been read and Cx(i) has been calcu-
lated. It consists of three stages. At the first stage, Cx(i) is retrieved from the Block-
RAM, at the second it is squared and at the third it is accumulated into a register. The 
value of the accumulator after all Cx(i) have been processed is the correct value of V5. 

Computation of the Logarithm. To support the calculation of V4 (Eq. 9), we imple-
mented a novel method for the efficient approximation of the base-2 logarithm of 16-
bit integers. This method results in a 3-stage pipelined circuit that requires 123 slices 
(less than 0.7% of the total FPGA area) and achieves a maximum frequency of 
121.5MHz. The stages of the circuit are: 
1. The integer part of the logarithm ⎣ ⎦nli 2log=  is calculated by means of a priority 

encoder. Its value is the position of the most significant bit of the input integer. 

klknkn i
kk =⇒+<≤⇒<≤ + 1log22 2

1  (18) 

2. The fractional part of the logarithm lf = log2n − li is estimated from Eq. (19), as a 
linear approximation between the points (2k, k) and (2k+1, k+1). The value lf  can be 
easily extracted from the binary representation of n, by removing its most signifi-
cant bit and right shifting by k bits. 
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3. The accuracy of the approximation can be further increased by a transformation 
performed on the fractional part of the logarithm lf. This transformation is ex-
pressed by Eq. (20).  
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The optimal a is the one that minimizes the error E between log2n and the approxi-
mated logarithm ( '

fi ll + ), where  
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The error E as a function of a is illustrated in Fig. 2  
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Fig. 2. Estimation of the error E for different values of a 

Although the minimum error was achieved for a=0.22 (E=0.07%), we selected 
a=0.25 (E=0.08%) because it is implemented using simpler circuits (just a single 
shifter) and the error is only marginally higher. 

4   Results 

The proposed system was tested using natural raw images of 512×512, 1024×1024 
and 2048×2048-pixel dimensions. The images were divided into blocks of 8×8, 
16×16, 32×32, 64×64, 128×128 and 256×256-pixel dimensions and given as input to 
the system in order to evaluate its performance. 

In the case of a 16×16-pixel or smaller input block, the triangular co-occurrence 
matrix for Ng = 32 is sparse, as the number of pixel pairs that can be considered for its 
computation, is smaller than the total number of co-occurrence matrix elements. 
Therefore, for input blocks of 8×8 and 16×16 pixels, Nc is set to the maximum possi-
ble value of 64 and 256 respectively.  



In the case of a 32×32-pixel or a larger input block, the co-occurrence matrix is not 
considered sparse, as the number of all possible pixel pairs that take part in its com-
putation is larger than the total number of its elements (i.e. 528). Therefore, Nc is set 
to 528.  

By following a grid search approach for the determination of n, it was found that 
the sixteen-way set-associative arrays (n = 16) result in the optimal tradeoff between 
circuit complexity and time performance. 

The proposed architecture, as implemented on the Xilinx Virtex-XCV2000E-6 
FPGA, operates at 36.2MHz and 39.8MHz and utilizes 77% and 80% of the FPGA 
area for 8×8 and 16×16 input blocks respectively, by exploiting the sparseness of the 
co-occurrence matrices. The use of larger input blocks results in approximately the 
same operating frequency reaching 37.3MHz and an area utilization of 83%. 

The image and block dimensions for which the proposed system achieves real-time 
performance are illustrated in Fig. 3. 
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Fig. 3. Performance of the proposed system in images per second 

The results show that as the dimensions of the block increases, the system per-
formance is enhanced. It is worth noting that a real-time performance for video appli-
cations is reached using images of 2048×2048 pixels with a block size of 128×128 
pixels or higher. Best time performance is achieved for 512×512-pixel images with a 
block of 256×256 pixels, whereas marginal real-time performance is obtained for 
1024×1024-pixel images with a block of 16×16 pixels, and for 2048×2048 with a 
block of 64×64 pixels. 



5   Conclusions 

We presented a novel dedicated hardware system for real-time extraction of second-
order statistical features from high-resolution images. It is based on a parallel FPGA 
architecture, enabling the concurrent calculation of sixteen gray-level co-occurrence 
matrices and four feature vectors. The input images are divided into blocks which are 
loaded to the RAM banks of the FPGA board. The FPGA processes each block and 
writes back four feature vectors. The performance of the proposed system increases 
as the image blocks become larger and the number of calculated vectors decreases. 

The experimental results showed that the proposed system can be used for high 
resolution video applications which require real-time performance, the analysis of 
multiple video streams, and other demanding image analysis tasks.   

The proposed system displays several advantages over the system presented in [2], 
which are summarized in the following: 
• It calculates both the co-occurrence matrix and the features in a single FPGA core, 

whereas in [2] they are calculated in two separate cores. This avoids the overhead 
introduced by reprogramming each core onto the FPGA. 

• It is capable of producing multiple feature vectors for each image, whereas in [2] a 
single feature vector is produced for each image. This facilitates in more accurate 
localization of texture within the image. 

• It uses 25 bits per pixel for the representation of the input images, whereas in [2] 
the input images are represented using 5 bits per pixel. This allows a read rate of 
25 bits per clock cycle from each memory bank, which results in a 5 times larger 
input bandwidth. 

• It uses set-associative arrays for the sparse representation of the co-occurrence 
matrices, which enable the inclusion of four vector calculation units in a single 
core. 

The results advocate the feasibility of real-time feature extraction from high-
resolution images, using an efficient hardware implementation.  

Future perspectives of this work include:  
• The implementation of more second-order statistical features in a single FPGA 

core. 
• The implementation of CWC [1] or other features based on co-occurrence matri-

ces.  
• The classification of feature vectors in hardware. 
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