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In this paper, we present Microarray Medical Data explorer (Microarray-MD), a novel software

system that is able to assist in the exploratory analysis of gene expression microarray data. It

implements a combination scheme of multiple Support Vector Machines, which integrates

a variety of gene selection criteria and allows for the discrimination of multiple diseases

or subtypes of a disease. The system can be trained and automatically tune its parameters

with the provision of pathologically characterized gene expression data to its input. Given

a set of new, uncharacterized, patient’s data as input, it outputs a decision on the type

or the subtype of a disease. A graphical user interface provides easy access to the system
DNA Microarrays operations and direct adjustment of its parameters. It has been tested on various publicly

overall accuracy it achieves was estimated to exceed 90%.

for the standardization and normalization of DNA microar-
Gene selection

SVM

available datasets. The

1. Introduction

DNA microarray technology is the premier tool for the study of
gene expression on a genomic scale. Scientists seeking to har-
ness the potential of this technique are often challenged by the
prodigious quantities of data produced. Well-designed, user-
friendly software is the key to tracking, integrating, qualifying,
and ultimately deriving scientific insight from experimental
results. A variety of software systems has been developed to
assist researchers in their attempt to tackle several microar-
ray related problems ranging from the simple gene expression
levels normalization to the modelling of biomolecular network
graphs.
Such software systems have been implemented since the
early beginnings of the millennium. Do et al. [1] proposed the
GeneClust software for microarray data analysis which imple-
ments hierarchical clustering and gene shaving algorithms [2].
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Li and Wong [3] proposed the dChip software which imple-
ments a model-based expression analysis of oligonucleotide
arrays and several high-level analysis procedures, including
comparative analysis and hierarchical clustering. Peterson [4]
proposed Clusfavor, a software package oriented in unsu-
pervised analysis of microarrays. A powerful software suite
named Genesis has been developed by Sturn et al. [5] for
large-scale gene expression analysis. It includes filters, nor-
malization and visualization tools, distance measures as well
as clustering and classification algorithms such as hierarchical
clustering, self-organizing maps, k-means, principal compo-
nent analysis, and Support Vector Machines (SVMs). Colan-
tuoni et al. [6] developed a web-based tool named Snomad
ray data, using two non-linear transformations which correct
both bias and variance of microarray element signal inten-
sities. Saal et al. [7] developed Base, a software system for

erved.
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ing to the dyes used. The intensity of the same spot in both
channels is measured with special image analysis software
and the ratio of these channel intensities is used for the com-
putation of the gene expression levels [22].
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the management of biomaterial information, raw data and
images, which provides integrated and “plug-in”-able normal-
ization, data viewing and analysis tools. An open source suite
of tools named TM4 has been developed by Saeed et al. [8]. It
consists of four major applications, namely Microarray Data
Manager (MADAM) which is a data entry and management
tool for DNA microarray experiments, TIGR Spotfinder which
is a semi-automated image analysis software, Microarray Data
Analysis System (MIDAS) which is used for data normaliza-
tion and filtering, and Multiexperiment Viewer (MeV) which
is a data mining tool that implements a variety of clustering
algorithms. Another software suite provided in open source
is Bioconductor. It comprises of several packages that pro-
vide innovative tools for the analysis and comprehension of
genomic data [9]. Su et al. developed RankGene, a software
system which integrates a variety of popular ranking criteria,
ranging from the traditional t-statistic to the one-dimensional
SVMs [10]. A minimum spanning tree representation of gene
expression data is being exploited by Excavator, a software
system for DNA microarray data clustering [11]. Toyoda and
Konagaya [12] developed KnowledgeEditor, a graphical aid
for biologists on biomolecular network modelling. Recently
Pieler et al. proposed ArrayNorm a versatile and platform-
independent application for the visualization, normalization
and statistical identification of genes with significant changes
in expression [13].

The afore-mentioned software systems basically address
experienced bioinformatics specialists rather than specialists
in medicine and biology as they involve complicated opera-
tions and adjustment of parameters. Moreover the extrava-
gant cost of both DNA microarrays and the necessary lab-
oratory equipment as well as the high degree of variability
between the different experiments, makes it quite uncom-
mon nowadays to use such systems for diagnostic purposes.
These reasons explain the current trend for highly specialized
research software. However, researchers have suggested that
within this decade microarrays will routinely be used for med-
ical diagnosis by physicians [14].

In this paper, we propose Microarray Medical Data explorer
(Microarray-MD), a novel software system that is able to assist
in the exploratory analysis of gene expression microarray
data, by class prediction. It implements a cascading archi-
tecture of SVMs which integrates a variety of gene selection
criteria and allows for the discrimination of multiple classes
that correspond to multiple diseases or subtypes of a dis-
ease. SVMs are binary classification algorithms that have been
originally proposed by Vapnik [15] in the framework of struc-
tural risk minimization. The studies of Brown et al. [16] and
Furey et al. [17] advocate to that SVMs are advantageous over
other classification methods for microarray data, as they are
remarkably robust, their performance is not easily affected by
sparse or noisy data, and they resist to overfitting and to the
“curse of dimensionality” [18]. Moreover preliminary research
of our group [19,20] has shown that the cascading architec-
ture of SVMs adopted is capable of achieving comparable and,
in many cases, higher classification accuracy than other rel-

evant approaches that have been proposed in the literature.
Given a set of new, uncharacterized, patient’s data as input,
the system outputs a decision on the type or the subtype of a
disease. The proposed system offers a graphical user interface
b i o m e d i c i n e 8 3 ( 2 0 0 6 ) 157–167

(GUI) which combines simplicity with practicality and enables
users to easily understand its operations and exploit its capa-
bilities to the greatest extent.

The rest of this paper is organized as follows: in Section
2, a short background on DNA microarrays is provided. The
Microarray-MD system and the methods it implements are
described in Section 3. In Section 4 the GUI of the system is
presented. In Section 5, we appose example runs and results
of its application and in the last section the conclusions of this
study are summarized.

2. DNA microarray data

A DNA microarray consists of a collection of nucleic acid
sequences immobilized onto some solid support so that each
unique sequence forms a tiny feature, called a spot or probe [21].
The spots are organized in an orderly and consistent way, as
their location is used to identify the particular gene sequences.
A glass slide or glass wafer acts as solid support onto which
up to tens of thousands of spots can be arrayed in a total area
of a few square centimetres.

An mRNA sample of a test subject called target is prepared
and labelled using fluorescent dye or radioactive marker. To be
able to compare a large number of samples a reference RNA
which is used in all experiments is labelled with a different
fluorescent dye. The use of different fluorescent dyes allows
mRNAs from the two different cell populations, the sample
and the reference, to be mixed and hybridized to the same
array, which results in competitive binding of the target to the
arrayed sequences. After hybridization and washing, the slide
is laser-scanned using two different wavelengths, correspond-
Fig. 1 – Arrangement of a gene expression matrix.
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The set of gene expression measurements acquired from
single microarray experiment can be considered as a large

eature vector. Low quality gene expression measurements
ay result in the appearance of missing values within these

ectors [23]. Results of multiple microarray experiments using
dentical probes for different samples lead to the construction
f the so-called gene expression matrix. This matrix consists of
ows that correspond to different genes and of columns that
orrespond to different samples (Fig. 1). However, for efficient
ene expression analysis, the establishment of standard DNA
icroarray protocols and laboratory methods is required to
ake the different samples comparable before they become

arts of the same gene expression matrix [24].

. System description
icroarray-MD is a system capable of “learning” to recognize
he pathology of samples provided to its input through a super-
ised training procedure. The block diagram of Microarray-MD
s illustrated in Fig. 2. It includes two processing units, a Pre-

Fig. 2 – Block diagram of the
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processing and a Decision Unit. The Pre-processing Unit pre-
pares the gene expression data to passing into the Decision
Unit, which is the main processing unit of the proposed sys-
tem.

The user may switch between two modes of operation: the
training and the testing mode. The training mode of operation
requires a gene expression matrix of pathologically charac-
terized samples as input. During training the system orga-
nizes its internal structure and tunes its pre-processing and
classification parameters for a given medical problem. These
parameters are then stored for use during the testing mode
of operation. Given a patient’s gene expression vector, the
trained system is able to classify it is based on prior knowledge
that has been encoded in the stored training parameters.

3.1. Pre-processing Unit
The Pre-processing Unit handles the management of missing
values as well as the normalization of the gene expression
levels. Poor quality in the preparation of the mRNA targets
contributes to low quality gene expression measurements, as

Microarray-MD system.
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it affects the mean values and the standard deviation of the
intensities of the spots, their size and their contrast to the
local background areas [23]. These low quality measurements
are usually discarded and missing values appear.

A straightforward approach when dealing with samples
containing missing values would be to discard them [18].
Unfortunately, most DNA microarray datasets consist of a very
limited number of samples and thus it would be a luxury to
drop available data. Therefore, a variety of methods have been
reported in the literature for handling missing gene expres-
sion measurements. Most of these methods suggest that the
missing values should be replaced by others deriving from the
rest of the available data set. These include simple approaches
such as the replacement of the missing values with the row-
average of the gene expression matrix [23] or more sophis-
ticated imputation methods based on k-nearest neighbours
[25], singular value decomposition [25] and the Bayesian prin-
cipal components analysis [26]. In the Pre-processing Unit
of Microarray-MD we have incorporated (a) the row-average
method, as it is simple and effective [23] and (b) the k-nearest
neighbours method (k-NN) which is more robust than the row-
average method but requires more computations [25].

In addition to the estimation of missing values, the Pre-
processing Unit incorporates data normalization methods
which aim to the adjustment of the gene expression levels
so that meaningful biological comparisons between different
DNA microarray experiments can be made. There are a num-
ber of reasons why data should be normalized, including dif-
ferences in the amounts of targets hybridized in the array, and
differences in the gains of the microarray during the scanning
process [23]. In our implementation two normalization meth-
ods, widely used in the literature, have been included. The
first method normalizes the gene expression levels of each
sample to conform to zero mean and unitary variance [23].
The second method normalizes the gene expression levels by
subtracting its median and by dividing the result by its quartile
range (the difference between the first and the third quartiles).
The median and quartile range are more robust estimators
for the center and the dispersion of a distribution respectively
[27].

3.2. Decision Unit

The Decision Unit handles medical problems as multi-class
classification problems. It is capable of classifying the input
gene expression vectors to N classes noted as ωi, i = 1, 2, . . .N.
Each class corresponds to samples acquired from healthy
patients, from patients suffering from the same disease or
from patients suffering from a subtype of a particular disease.
It comprises of N − 1 cascading blocks Bj, j = 1, 2, . . .N − 1 as
illustrated in Fig. 3.

Each block consists of a gene selection module Sj and a
classification module Cj. Module Sj uses the output of the Pre-
processing Unit as input. Module Cj is autonomously trained
with a subset Xj of the available training samples X, where Xj
is defined as

Xj = {x ∈ (ωj ∪ ωh)}, ωh =
N⋃

p=j+1

ωp (1)
Fig. 3 – The Decision Unit.

Module Sj selects a subset of �j gene expression measure-
ments which best discriminates class ωj from class ωh and
maximizes the classification performance of the module Cj.

Given a test vector x, the module Cj is fed with �j gene expres-
sion measurements and outputs 1, if x ∈ ωj, or −1, if x /∈ ωj.
If x /∈ ωj, the next block Bj+1 will be activated to classify the
test vector using the corresponding �j+1 gene expression mea-
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Table 1 – Gene ranking criteria
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urements. Otherwise the classification task terminates and
is assigned to class ωj. The last block BN−1 decides whether
∈ ωN−1 or x ∈ ωN.

.2.1. Gene selection modules
mong the gene selection methods that have been proposed

n the literature, the statistical gene-ranking techniques are of
articular interest as they are less computationally demand-

ng than wrapper or embedded techniques [28,29]. The gene
election modules of the Decision Unit integrate three rank-
ng criteria for the selection of differentially expressed genes
Table 1). Golub et al. [30], Pan [27] and Sun and Xiong [31]
ave shown that these criteria can be efficiently used for the

dentification of differentially expressed genes. These criteria
uggest that the genes are ranked in descending order based
n the absolute value of the Z(g) statistic for each gene g.

The (mj
g, �

j
g) and (mh

g, �h
g ) correspond to the mean and stan-

ard deviation of the expression levels of the gene g for the
raining samples that belong to ωj and ωh classes respectively
nd mg is the mean expression level of gene g for the entire
raining set. The xgi is the (g, i) element of the gene expression

atrix that corresponds to the expression level of gene g for
he sample i. The number of samples belonging to each of the
bove classes is denoted by nj and nh. The �j top-ranked genes
re selected as they lead to a large between-class distance and
small within-class variance.

.2.2. Classification modules
he classification module of each block of the Decision Unit

mplements a binary SVM classifier. SVM training involves a
uadratic programming optimization procedure which aims
o the identification of a subset of important vectors from the
raining set, called support vectors. These vectors are utilized
or the drawing of a separating hypersurface between the two
lasses. In summary this algorithm proceeds as follows.

Let I be an input space of vectors xi, i = 1, 2, . . .n, distributed
o two classes, labelled as yi ∈ {−1, 1}. Considering ˚ as a non-
inear mapping from the input space I ⊆ �� to a Euclidean
pace H, the training results in finding a hypersurface defined
y the equation

˚(x) + w0 = 0 (2)

o that the margin of separation between the two classes is max-
mized. It is easy to prove [15,32] that for the maximal margin

ypersurface,

=
n∑

i=1

�iyi˚
T(xi) (3)
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and w0 is estimated from the Karush-Kuhn-Tucker complemen-
tarity condition [32]. The variables �i are Lagrange multipliers
which are estimated by maximizing the Lagrangian

LD =
n∑

i=1

�i − 1
2

n∑
i=1

n∑
j=1

�i�jyiyjK(xi, xj) (4)

with respect to �i. The vectors xi for which 0 < �i ≤ c, are called
support vectors and c is a positive cost parameter. As c increases
a higher penalty for errors is assigned.

The function K(xi, xj), known as kernel function, is defined as
the inner product

K(xi, xj) = ˚T(xi)˚(xj) (5)

and should satisfy Mercer’s condition [15].
Most commonly used kernel functions are the linear K(xi,

xj) = xi·xj, the polynomial K(xi, xj) = (�·xi·xj + 1)p of second (p = 2)
and third order (p = 3), and the radial basis functions (RBF)

K(xi, xj) = e
−
∥∥xi−xj

∥∥2
/�

, where � is a strictly positive constant.
Apparently the linear kernel is less complex than the polyno-
mial and the RBF kernels. The RBF kernel usually has better
boundary response as it allows for extrapolation, and most
high-dimensional data sets can be approximated by Gaussian-
like distributions similar to those used by RBF networks [32].
The appropriate kernel function, the c and � parameters for a
given classification problem are automatically determined by
grid search aiming at the minimization of the leave-one-out
cross validation classification error [34], i.e. systematic search
for the optimal set of parameter values by testing all possible
combinations of values in a given discretized parameter space.
Leave-one-out cross validation is an error estimation method
where the classifier is trained using (n − 1) samples and eval-
uated on the one remaining sample; this is repeated n times
with different training sets of size (n − 1) [18,33]. This method
leads to an almost unbiased estimate of the classification error
probability, if gene selection and parameter tuning take place
on the (n − 1) samples during each iteration. So, for each itera-
tion of the leave-one-out procedure, the �j selected genes and
the classification parameters are retuned using the training
set of the nested leave-one-out cross validation iteration, for
each block of the Decision Unit [35,36].

The hypersurface separating of the two classes can be
finally derived by the following equation:

∑
∀i:0<�i≤c

�iyiK(xi, x) + w0 = 0 (6)

In the testing mode of operation, given a test vector x, the
trained SVM outputs a label Y:

⎛ ⎞
∀i:0<�i≤c

which designates the class the x belongs to. This information
is used as a clue for the final decision.
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4. Graphical user interface

The development of a user interface should take into account
user requirements that can be determined by user needs and
the tasks the system is intended to support [37,38]. Com-
patibility between the users’ understanding of the system
and their skill or knowledge can be achieved by a user inter-
face design which takes into account the user’s level of skill
or knowledge, the functionality of user tasks, their impor-
tant procedural characteristics and the type of information
use. The user interface of Microarray-MD has been designed
mainly for scientists specialized in the field of medicine
and biology. Permitting a level-structured approach to learn-
ing [39], novice users can be taught a minimal subset of
objects and actions with which to get started and progres-
sively expand their potential to more complex tasks. On the
other hand, users having strong knowledge of the supported
tasks and interface concepts can show rapid progress, work
faster and soon learn how to take advantage of most options
provided by the system.

At the beginning of the program, the user is prompted to
choose between the two operating modes of the system. On
user’s response, a window associated with the corresponding
mode of operation is opened: the Training Window, for the
training mode and the Testing Window for the testing mode.
Moreover in the case of the training mode, which involves
more complex options than the testing mode, novice users are
offered a Wizard interface which can guide them to go through
the configuration of the training parameters and the initiation
of the training procedure.

4.1. The Training Window and the Wizard interface

The Training Window is illustrated in Fig. 4. It consists of three

input panels (Panel-1, Panel-2 and Panel-3), each of which
can be used to select certain options and two output panels
(Panel-4 and Panel-5) facilitating the presentation of the train-
ing results and the current status of the application.

Fig. 4 – The Train
b i o m e d i c i n e 8 3 ( 2 0 0 6 ) 157–167

Panel-1 is provided for the management of input/ouput
operations. The user can designate the location of an input
file containing the desired gene expression matrix (GEM) train-
ing data. These files can be directly opened or they can be
constructed by combining several gene expression vectors
encoded in standard file formats supported by the GenePix Pro
DNA microarray image analysis software. The GEM file format
is compatible with the tab-delimited pre-clustering file for-
mat (pcl) supported by the Stanford Microarray Database [40].
Moreover the user is provided with options to modify GEM files
by inserting or removing samples. A sub-panel located on the
right of the first panel has been assigned to save or load the
training parameters of the system.

Once a GEM file is loaded, Panels-2 and 3 are acti-
vated. Panel-2 contains graphical controls for the specifica-
tion of the pre-processing parameters. The user may choose
between the row-average and the k-NN methods for the impu-
tation of missing values, and between the mean/variance
and median/quartile range - based normalization methods,
described in Section 3.1.

Panel-3 contains graphical controls for the specification of
the classification parameters. The various classes as well as
the distribution of the samples involved in the medical prob-
lem the system is intended to solve, are apposed in a list-box
control. The ordering of the classes corresponds to the order-
ing of the blocks of the cascading architecture. Two arrow-
buttons allow for the users to reorder the classification blocks.

The gene selection sub-panel located underneath the list-
box control serve for the selection of a gene ranking criterion,
as described in Section 3.2.1, and the range of top-ranked
genes to be tested as inputs to the classification modules of the
cascading architecture. The system will incrementally search
this range to identify a single subset of top-ranked genes that
maximizes the classification performance. For example, if the

range is set to 1–15 genes, the system will test fifteen sets of
top-ranked genes, namely gene (1), genes (1, 2), . . ., genes (1,
2, 3, . . .15). The classification parameters can be adjusted by
the sub-panel located next to the gene selection sub-panel.

ing Window.
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he user may select up to four different kernel functions to
e tested to minimize the leave-one-out cross validation error

n each classification module and define the search ranges for
he c and � parameters.

On the upper right side of the Training Window, Panel-
provides information on the status of the application, e.g.

oading, training, etc., information related to the open GEM
le, such as the total number of samples and the dimension
f the gene expression vectors.

As soon as the required parameters are set the user may ini-
iate the training process. During the training procedure the
ystem searches within the ranges of the parameter values set
y the user, to automatically determine the optimal ones for
particular medical problem. Therefore, the user needs not

e concerned with the technical details of the different pos-
ible training options. After the training finishes, the results
re printed in Panel-5 and can be saved for archiving pur-
oses. The results include the classification performance of
he system presented by means of confusion matrix and aver-
ge accuracy, and the optimal system configuration details as
hese occur by the almost unbiased leave-one-out parameter
uning process mentioned.

Novice users are always provided with the option of train-
ng Microarray-MD system by using the Wizard interface
Fig. 5). The Wizard provides a step-by-step interactive process
ccompanied by helpful information, and allows only for the
election of key options, such as: which file to use for training,
o apply or not to apply pre-processing, to select or not to select
subset of differentially expressed genes in the classification
rocess. The purpose of these options as well as the default
arameters used, are described in the help legends appear-

ng at the bottom of the Wizard’s dialogs. The most effective
arameters in most of the medical problems tested have been
onsidered as default. These include the row-average miss-
ng values imputation method, the mean/variance normal-
zation method and the Welch’s t-test ranking criterion. For
ene selection the Wizard assumes a search range of one to a
umber of top-ranked genes, which equals to one tenth of the
otal number of the available samples in order to avoid per-
ormance degradation phenomena attributed to the “curse of
imensionality” [44].

.2. The Testing Window

iven a new patient’s gene expression data, a decision on the
lass they belong to, can be made through the Testing Window
llustrated in Fig. 6. Testing the system is much simpler than
raining it for the user, as the Testing Window requires only
wo filenames as input. The first filename corresponds to the
le containing the system parameters produced as a result of
he training process. This file also contains information that
an be used to identify and retrieve the names of the genes
elected by the gene selection module of each block. The sec-
nd filename corresponds to the gene expression data of one
r more patients as these are quantified by means of a DNA
icroarray image analysis software. This file should conform
o the formats supported by the GenePix Pro software or to the
EM file format.

The user may proceed to the classification of the input
ene expression data by just clicking on the “Decision” but-

Fig. 5 – The Wizard dialogs for the inquisition of (a) input,
(b) pre-processing and (c) classification parameters.
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Table 3 – Classification of prostate cancer samples from
Lapointe’s et al. [41] dataset

Actual Microarray-MD

Normal Primary Metastasis
Fig. 6 – The Testing Window.

ton. This action triggers the retrieval of the pre-processing and
the classification parameters from the parameters file. Then
the internal structure of the Decision Unit is automatically
determined and the system is fed with the patient’s unchar-
acterized gene expressions as these are loaded from the gene
expression measurements file. The results are printed in the
Results panel of the Testing Window. These include the deci-
sion made by the system as well as the probabilities of the
input sample to belong to each of the classes the system was
trained on. These probabilities are based on the confusion
matrix obtained during the training process.

5. Results

In this section, we present the results of experiments per-
formed using the Microarray-MD system with prostate and
colon cancer gene expression data.
5.1. Experiments with prostate cancer data

The experiments with the prostate cancer data were per-
formed in two phases. The primary phase uses a multi-class

Table 2 – Training parameters used for prostate cancer classific

Parameters/dataset Lapointe et al. [40]

Pre-processing parameters
Missing values estimation Row average
Normalization Mean/variance

Diagnostic parameters
Classification sequence Normal → Primary–Metastasis
Gene selection method Welch’s t-test
SVM kernel types Linear, polynomial-2nd,

polynomial-3rd, RBF
Cost (c) parameter range 2−1–27

Gamma (�) parameter range 2−8–2−6

Number of genes range 1–11
Normal 40 1 0
Primary 4 58 0
Metastasis 0 0 9

dataset, whereas the secondary phase uses two binary-class
datasets.

The dataset used in the primary experimental phase was
first studied by Lapointe et al. [41] and it is available from the
Stanford Microarray Database [40]. It consists of 112 samples
with 44,016 gene expressions spanning three classes, namely
62 primary prostate tumors, 41 normal prostate samples and
9 pelvic lymph node metastases.

The gene expression matrix data file of the prostate cancer
dataset was loaded to the system and the structure of the Deci-
sion Unit was determined to two blocks. The first block was
assigned to the discrimination of the normal from the joint
primary and metastatic samples, whereas the second block
was assigned to the discrimination of primary from metastatic
samples. The ranges of the parameter values set for training
are apposed in Table 2.

Fig. 4 illustrates a screenshot of the Training Window with
the selected options and the output of the system after train-
ing. The overall classification accuracy for the prostate cancer
data was estimated to be 95.5% by leave-one-out cross vali-
dation on the available samples. The classification results per
class are summarized in the confusion matrix of Table 3. This
table shows that the system is capable of classifying 100% of
the metastatic samples correctly, 2.4% of the normal samples
as primary tumors and 6.5% of the primary tumors as normal.
The system concluded that the optimal classification param-
eters for the particular medical problem include five input
genes, 3rd-order polynomial kernel, c = 0.5 and � = 0.0156 for
the first block, and one input gene, linear kernel and c = 0.5 for
the second block. These parameters were saved and applied

for the classification of a sample of a phantom patient as illus-
trated in Fig. 6.

The prostate cancer datasets used in the secondary exper-
imental phase are also publicly available. The first was intro-

ation

Singh et al [42] Welch et al. [43]

– –
Mean/variance Mean/variance

Normal–Cancer Normal–Cancer
Welch’s t-test Welch’s t-test
Linear, polynomial-2nd,
polynomial-3rd, RBF

Linear, polynomial-2nd,
polynomial-3rd, RBF

2−1–27 2−1–27

2−8–2−6 2−8–2−6

1–10 1–3
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Table 4 – Classification of prostate cancer samples from
Singh’s et al. [42] dataset

Actual Microarray-MD

Normal Cancer

Normal 43 7
Cancer 6 46

Table 5 – Classification of the prostate cancer samples
from Welch’s et al. [43] dataset

Actual Microarray-MD

Normal Cancer
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Table 7 – Classification of the colon cancer samples from
Alon’s et al. [45] dataset

Actual Microarray-MD

Normal Cancer
Normal 9 0
Cancer 3 22

uced by Singh et al. [42]. It consists of 102 samples with 12,600
ene expressions. Its samples are distributed into 50 normal
nd 52 tumor samples. The second was studied by Welch et al.
43]. A total of 9 normal and 25 tumor samples with 12,626 gene
xpressions each were considered. As both of these datasets
nvolve two classes a single-block structured Decision Unit
as determined by the Microarray-MD system. The training
arameter values set to the Training Window are presented

n Table 2. The overall classification accuracy achieved for
he first and the second dataset was 87.25% (linear kernel,
= 0.5 and four input genes) and 91.17% (linear kernel, c = 2
nd two input genes), respectively. The corresponding confu-
ion matrices are illustrated in Tables 4 and 5.

.2. Experiments with colon cancer data

he colon cancer dataset used was first studied by Alon et
l. [45]. It consists of 62 samples with 2000 gene expressions
panning two classes, namely 40 tumors and 22 normal colon
amples.

The ranges of the training parameter values set to the

raining Window are presented in Table 6. The colon can-
er classification problem involves only two classes and thus
single-block structured Decision Unit was determined. The

verall classification accuracy for the particular medical prob-

Table 6 – Training parameters used for colon cancer
classification

Parameters/dataset Alon et al. [45]

Pre-processing parameters
Missing values estimation –
Normalization Mean/variance

Diagnostic parameters
Classification sequence Normal–Cancer
Gene selection method Welch’s t-test
SVM kernel types Linear, polynomial-2nd,

polynomial-3rd, RBF
Cost (c) parameter range 2−1–27

Gamma (�) parameter range 2−8–2−6

Number of genes range 1–6
Normal 19 3
Cancer 3 37

lem was estimated to be 90.3%. The classification results per
class are summarized in the confusion matrix of Table 7. From
this table it can be derived that Microarray-MD system pro-
vides a sensitivity of 92.5% and a specificity of 86.4%. The
system concluded that the optimal classification parameters
for the colon cancer classification problem include one input
gene, linear kernel and c = 0.5.

6. Conclusions and prospects

Microarray-MD is a biomedical software system that is able to
assist in the exploratory analysis of gene expression data, pro-
duced by microarray experiments. The major contribution of
Microarray-MD is that it can provide physicians with substan-
tial molecular-level information by exploiting gene expres-
sions. The gene expression measurements are pre-processed
and consequently used for the classification of the corre-
sponding samples in two or more categories depending on
their pathology. Through the simple and practical GUI of the
proposed system novice users are offered the potential of
using it with guidance provided by a helpful Wizard interface.
The system is capable of performing automatic tuning of its
parameters, thus simplifying the microarray analysis process
for both novice and expert users. Moreover, expert users are
offered the options to tune all the relevant parameters of the
algorithms applied for decision making in medical research.

After testing different orderings of the blocks in the archi-
tecture of cascading classifiers, the system’s accuracy has not
been found to be significantly affected. However, if one would
like to proceed to further fine tuning of the system, the order-
ing of the blocks could be determined (a) by the available
knowledge provided by the medical experts on the particu-
lar medical problem [18] and (b) by considering the complex-
ity and the overall classification accuracy of the architecture.
Studies on cascading classifiers [33,46] suggest that the clas-
sifiers should be ordered in ascending complexity; that is, the
less complex classifiers should be ordered before the more
accurate and complex ones. However, the architecture of the
proposed system consists only of SVM classifiers and embod-
ies a search algorithm for the determination of their param-
eters, which in turn affects their complexity. For example, a
large cost parameter could lead to an increase in the number
of support vectors. Therefore, the ordering of the classifiers in
ascending complexity is not directly feasible.

The Microarray-MD system has been tested on various pub-
licly available DNA microarray datasets, including those pro-

vided by Stanford Microarray Database [40]. In most cases the
overall classification accuracy it provides, measured by the
almost unbiased leave-one-out procedure, exceeds 90%. Its
high accuracy has been avouched in this paper by demon-
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strating its application for the classification of prostate cancer
and colon cancer data. As the number of samples increases a
possible improvement of the system’s accuracy would be fea-
sible by considering balanced class distributions for each block
[47]. In any way the generality of the results obtained by the
system require further and careful consideration, from a bio-
logical and a medical point of view, by expert biologists and
physicians.

Within our prospects is the enhancement of Microarray-
MD by:

1. The incorporation of image processing techniques and
analysis methods that could be applied directly to the
images acquired from the microarray laser scanner, aim-
ing at the automation of the whole process.

2. The incorporation of more sophisticated gene selection
methods, such as genetic algorithms, aiming at the
improvement of the classification accuracy.

7. Hardware and software specifications

Microarray-MD was developed in Microsoft Visual C++ 6.0 for
Windows XP operating system. The implementation of the
SVMs was based on the publicly available LibSVM library [34]
which was modified to meet the needs of the particular appli-
cation. The hardware requirements of the proposed system
are minimal as it can run on most modern PCs. The example
program runs presented were performed on a Pentium-4 PC
2800 MHz with 512 MB RAM.

8. Availability of the software

A version of the presented software is available for download-
ing from our web site http://rtsimage.di.uoa.gr/download.htm.
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