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Abstract

Today 95% of all gastrointestinal carcinomas are believed to arise from adenomas. The early detection of adenomas9
could prevent their evolution to cancer. A novel system for the support of the detection of adenomas in gastrointestinal
video endoscopy is presented. Unlike other systems, it accepts standard low-resolution video input thus requiring less11
computational resources and facilitating both portability and the potential to be used in telemedicine applications. It
combines intelligent processing techniques of SVMs and color–texture analysis methodologies into a sound pattern13
recognition framework. Concerning the system’s accuracy this was measured using ROC analysis and found to
exceed 94%.15
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Biomedical system; Video endoscopy; Color–texture features; Support vector machines; Gastrointestinal lesions;17
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1. Introduction19

Gastrointestinal neoplasms include polyps arising from the epithelial cells of the gastric and the colonic
mucosa. These polyps are mainly classified into two types: adenomatous and hyperplastic polyps. Polyps21
of the first type, also referred to as adenomas, are usually cancer precursor lesions, whereas polyps of
the second type are not considered to be premalignant. Definitive distinction between the two types23
requires polyp biopsy and histological examination of the tissue specimens. Although there are modern
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non-invasive procedures to detect polyps, such as virtual endoscopy, standard video endoscopy remains1
the most efficient minimally invasive procedure to detect even small-size polyps that allows biopsy and
in many cases polyp resection. Today, the international consensus for the treatment of polyposis dictates3
removal of all polyps, regardless of the location, the size or other characteristics, in order to prevent a
possible development of cancer [1–3].5

During an endoscopic examination it is possible for some polyps to go undetected and evolve into
malignant tumors in the following years. A reliable system that would be capable of supporting the7
detection of adenomas could increase the endoscopist’s ability to accurately locate early stage adenomas,
and could contribute to the reduction of the duration of the endoscopic procedure, which is in most cases9
uncomfortable for the patients. Such a system would minimize the expert’s subjectivity introduced in the
evaluation of the clinical characteristics of the examined tissue. Moreover, a consequent cost reduction of11
the operation would also be feasible, as more patients could be examined faster even by less experienced
personnel.13

A variety of methods have been proposed in the literature for computer-aided evaluation of gastro-
intestinal endoscopic images or video. First attempts include the application of edge detection methods15
for the detection of gastric ulcers [4], region-growing methods for the extraction of large intestinal lumen
contours [5] and for the detection of abnormalities in the lower gastrointestinal tract [6].17

By the end of the nineties, texture analysis methods combined with intelligent pattern classification
techniques began to arise for the detection of lesions in endoscopic images. These methods were moti-19
vated by the fact that the textural characteristics of the tumorous lesions can be used for diagnosis not
only microscopically [7] but also macroscopically [8]. Neural network-based grey-level texture analy-21
sis approaches of endoscopic images include the usage of texture spectrum [9], co-occurrence matrix
[10,11], local binary patterns (LBP) [12] and wavelet- domain co-occurrence matrix features [13]. The23
latter approach has been applied for tumor detection in colonoscopic video-frame sequences in [14] and
it was integrated in a versatile and standalone software system for the detection of colorectal lesions in25
endoscopic video-frames named CoLD [15].

Although texture has proved to be important for the characterization of colorectal lesions, it has been27
shown that color can be used as an additional clue for the detection of lesions in endoscopic images.
Tjoa and Krishnan [16] combined texture spectrum and color histogram features for the analysis of colon29
status. Karkanis et al. [17] extended the concept of wavelet-domain co-occurrence matrix features for
color images and proposed the color wavelet covariance (CWC) features for computer-aided detection of31
adenomatous polyps of the colon in high-resolution endoscopic video-frames. The experimental results
showed that these features lead to higher detection sensitivity than the original grey-level features and33
other color–texture descriptors [18]. In a later work, Zheng et al. [19] proposed a clinical decision support
system based on a Bayesian fusion scheme that combines color, texture and lumen contour information35
for the detection of lumps and bleeding lesions in colonoscopic images. The fusion approach led to a
marginal improvement of the system’s sensitivity and specificity for lump detection as compared with37
the performance achieved only by extracting grey-level LBP histograms.

In this paper we present a novel intelligent system for automatic detection of colonic and gastric ade-39
nomas in endoscopic videos. It utilizes color–texture image features and incorporates non-linear support
vector machines (SVMs) to achieve improved detection accuracy compared to the linear classification41
scheme utilized in [17]. Moreover, we focus on the selection of a feature extraction method appropri-
ate for the analysis of low rather than high-resolution video-frames. The advantages emanating from43
the adoption of such a method include processing time reduction, applicability in telemedicine and less
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demanding hardware requirements. The assessment of the system’s performance is realized by means of1
receiver operating characteristics (ROC), which provide more reliable estimates of accuracy compared
to other measures, not deriving from ROC [20], which have been adopted in the previously cited works.3

The rest of this paper consists of four sections. Section 2 describes the architecture of the proposed
system. The methods investigated for the implementation of each module of the system are described in5
Section 3. In Section 4, we present the experimental results from the application of the proposed system
for the detection of colonic and gastric adenomas, in colonoscopic and gastroscopic videos, respectively.7
Finally, the conclusions as well as future perspectives of this study are summarized in Section 5.

2. System architecture9

The design of the proposed system takes into account the practical needs of both traditional and
contemporary endoscopists and allows standard low-resolution video input. The endoscopic examinations11
or at least the most informative video segments are usually recorded by the endoscopists on standard VHS
videotapes, for further, more thorough clinical evaluation. Scarcely do contemporary endoscopists utilize13
modern digital equipment, which allows direct recording of the endoscopic examination on digital media
in standard video file formats (Fig. 1).15

The proposed system is implemented in Microsoft Visual C + + and it can be installed in most
conventional personal computers (PCs) equipped with Microsoft Windows operating system. It accepts17
video files of the standard AVI format as input, and it outputs characterized video files with markers
framing all possible adenomas in the video-frame sequence. It consists of four modules, namely a pre-19
processing, a feature extraction, a classification and a post-processing module (Fig. 1). In the sequel, the
operation of these modules is outlined, and the methods employed in each module are further described21
in Section 3.

2.1. Pre-processing module23

The pre-processing module handles the extraction of video-frames with a user-defined frame rate and
size corresponding to a region of interest (ROI) within the original video-frames. This aims to exclusion25
of irrelevant textual information, such as patient’s name, date of birth, date and time of the examination,
printed on a constant dark background (Fig. 2). Another task of the pre-processing module is to apply27
color transformations on the extracted video-frames. The RGB color information they contain can be
then transformed to other color models that could enhance the detection of adenomas.29

2.2. Feature extraction module

The feature extraction module is assigned to the estimation of color–texture measures from the pre-31
processed video-frames. More specifically, each frame is raster scanned with a sliding window of user-
defined size and sliding step. For each window a number of features are estimated producing this way33
a single feature vector, as illustrated in Fig. 3. The number of feature vectors produced for each frame
depends on its size, the dimensions and the step of the sliding window.35
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Fig. 1. Block diagram of the proposed system.

Fig. 2. ROI extraction during pre-processing.
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Fig. 3. Feature extraction technique.

Fig. 4. Post-processing of labeled video-frames: (a) input frame, (b) labeled frame, (c) marker framing the regions labeled as
possible adenomas by the classification module, (d) system’s output after post-processing.

2.3. Classification module1

This module handles the classification of the feature vectors into one of the two classes: adenomas or
non-adenomas. The first class usually represents a minority-class of samples, whereas the latter represents3
a majority-class of samples. In the rest of this document these classes are referred to as normal and
abnormal, respectively.5

The classification module operates in two modes: the training and the testing modes. The training mode
of operation requires that the classification module should be fed with feature vectors from representative7
video-frames, previously selected and characterized by experts in gastroenterology. During training,
the classification module determines its internal parameters based on the available training samples. In9
the testing mode of operation it utilizes the knowledge gained from the training samples to classify
new samples extracted from unknown video-frames. The test samples are forwardly propagated and are11
consequently labeled as normal or abnormal. For each frame a stream of labels is generated and directed
to the post-processing module that follows.13

2.4. Post-processing module

The post-processing module utilizes the output of the classification module to produce new video-15
frames on which the possible adenomas are appropriately marked. The technique applied is illustrated in
Fig. 4. The stream of labels inputted to the post-processing module is used for the formation of labeled17
video-frames. Fig. 4(b) illustrates a labeled frame, on which the white color represents abnormal regions
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and the black color represents normal regions. The labeled frame is superimposed with the input frame1
(Fig. 4a) and a marker is drawn as the outer outline of all the abnormal regions (Fig. 4c, d).

3. Methods3

3.1. Color model transformations

Many medical applications utilize color to provide additional information that could enhance the5
diagnostic accuracy. The most common representation of color in digital imaging is realized by means of
the RGB color model. The direct use of the RGB model has proved to be inadequate for the description7
of clinical and pathological characteristics of tissues for various medical diagnostic tasks, including the
detection and diagnosis of early stage lesions in endoscopic images [21,22]. Major drawbacks of the RGB9
color model include the high correlation among its components and the inconformity with the perceptual
mechanisms of the human brain [23].11

A variety of color models have been proposed to overcome these drawbacks. These models can be
derived from the RGB color model by linear or non-linear transformations implemented in the pre-13
processing module [17].

3.1.1. Linear transformations15
Linear RGB transformations commonly include XYZ, YIQ, and K-L or I1I2I3 models [23,24]. Color–

texture analysis studies conclude that the use of orthogonal color models improves texture discrimination,17
with theYIQ and K-L to be the most prominent models of this type [18]. TheYIQ model, which is used for
NTSC video signal transmission, is nearly orthogonal, whereas K-L has been designed to be orthogonal.19
The K-L transform of an image is originally formed by the eigenvector of the image’s correlation matrix.
Ohta et al. [24] showed that this matrix remains approximately the same for a large set of natural color21
images and in practice it can be approximated by a linear transformation of the RGB components. The
axes of the K-L space (I1, I2 and I3) are statistically uncorrelated. I1 explains the highest proportion of the23
total variance and represents intensity, whereas I2 and I3 correspond to the second and the third highest
proportion, respectively, and represent chromatic information.25

From a computational point of view the calculation of K-L from RGB is far simpler than that of YIQ,
since it requires simple integer operations [24]. Moreover, it has been experimentally shown that K-L leads27
to a more accurate texture classification than YIQ, when used prior to color–texture feature extraction
[18], and has been successfully utilized for the detection of adenomas [17].29

3.1.2. Non-linear transformations
Two major categories of color models that usually derive from non-linear transformation of the RGB31

components include the phenomenal and the CIE-uniform color models [23]. The phenomenal color
models attempt to classify colors in relation to how they are perceived by the human brain. In general,33
these color models mainly incorporate hue, saturation and brightness as classifying descriptors, and they
are intuitive as regards color manipulation. CIE-uniform color models have been proposed to describe35
color closer to the way it is perceived by humans, in the sense that the Euclidean distances measure the
perceived color differences.37
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The results of previous research on color–texture analysis [18,25] as well as on endoscopic image and1
video analysis [17] suggest that HSV and CIE-Lab color models should be considered in this study, as rep-
resentative members of the phenomenal and the CIE-uniform color model categories, respectively. HSV3
consists of hue, saturation and brightness value components, whereas CIE-Lab consists of a Lightness
component and two chromatic components, a and b.5

3.2. Grey-level and color–texture feature extraction

The texture analysis methods have been initially developed for grey-level images mainly because color7
is not mandatory for the human perception of texture. The effectiveness of the wavelet transform for
texture analysis has been pointed out in many studies for texture classification [27,28]. Experiments9
in color–texture analysis have shown that color information enhances texture classification [29]. Early
color–texture analysis approaches mainly involved the extraction of grey-level texture features from each11
image color channel separately [29]. Recent approaches to color–texture analysis focus on the exploitation
of both intra- and inter-channel information [18,30–32].13

Motivated by these studies we investigate the performance of three color–texture feature sets, namely
the wavelet correlation signatures (WCS), the color wavelet covariance features (CWC) and the opponent15
color–local binary pattern (OC–LBP) histograms, for the detection of gastrointestinal adenomas in low-
resolution endoscopic video. The first two have been applied for the detection of only colonic adenomas17
in high-resolution video-frames. The last one has been proposed as extension of the LBP for color images
[30] and has not been applied for endoscopic image or video analysis in the literature. Moreover, we have19
considered the extraction of grey-level features such as wavelet energy (WE), LBP and color wavelet
energy (CWE) features for comparison purposes.21

3.2.1. Wavelet energy features
The discrete wavelet transform (DWT) of a grey-level image is realized by convolution of the image23

with a low pass filter L and a high pass filter H , the output of which is then sub-sampled dyadically.
This procedure produces a low-resolution image B0(k) and detail images Bj(k), j = 1, 2, 3, at scale k,25
as described by the following equations [33]:

B0(k) = {Lx ∗ [Ly ∗ B0(k − 1)]↓2x}↓2y,

B1(k) = {Hx ∗ [Ly ∗ B0(k − 1)]↓2x}↓2y,

B2(k) = {Hx ∗ [Hy ∗ B0(k − 1)]↓2x}↓2y,

B3(k) = {Lx ∗ [Hy ∗ B0(k − 1)]↓2x}↓2y,

(1)

27

where ↓ 2 denotes the sub-sampling procedure, x and y denote the row-wise and columnwise operations
involved, respectively, and the asterisk (*) is the convolution operator. The repetition of this filtering29
procedure for k = 1, 2, . . . , K results in a multiscale representation of the image. The resulting images
Bj(k) comprise wavelet coefficients bj,k that encode the content of the input image in variable width31
spatial frequency bands. By omitting sub-sampling in Eqs. (1), a variation of DWT, the discrete wavelet
frame transform (DWFT), is produced [26]. DWFT is a redundant representation that leads to a texture33
description tolerant to translation [27,28]. The wavelet energy features are estimated by summing the35
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squares of all bj,k coefficients of the detail images Bj(k), j = 1, 2, 3:1

EBj (k) =
∑

i

bj,k(i)2. (2)

The low-resolution images of the DWFT are not taken into account for the computation of the energies as it3
has been shown that the detail images at any decomposition level perform better for the characterization
of textures than the low-resolution images [34]. A straightforward approach to extract DWFT energy5
features from color images is to apply DWFT to each color channel Ci and then use Eq. (2) to extract

CWE features E
Bj (k)

Ci
, i = 1, 2, 3, from each color channel Ci of the image separately.7

In this study, the DWFT was implemented by using biorthogonal spline filters as they have proved to
be more suitable for texture characterization [35].9

3.2.2. Wavelet correlation signatures
The WCS have been proposed by Van de Wouwer et al. [18] as extensions of the DWFT energy features11

that take into account the correlation of the wavelet coefficients between the image color channels. They
are derived by the following equation:13

WC
Bj (k)

Cl,Cm
=




E
Bj (k)

Cl
, l = m,

∑
ib

j,k
Cl

(i)b
j,k
Cm

(i)

E
Bj (k)

Cl
·EBj (k)

Cm

, l �= m,
(3)

where b
j,k
Cl

and b
j,k
Cm

are the coefficients of the detail images Bj(k), j = 1, 2, 3, k = 1, 2, . . . , K, of the15
color channels Cl and Cm,l = 1, 2, 3, m = 1, 2, 3, respectively.

3.2.3. Color wavelet covariance features17
The CWC features are covariance estimates of the second-order statistical information inherent in the

DWFT of the color channels of an image [17,31,32]. The image color channels are transformed to the19
wavelet domain by the DWFT. The second-order statistical information of the wavelet coefficients is
captured by means of co-occurrence matrices [36]. Co-occurrence matrices encode the grey-level spatial21
dependence based on the estimation of the second-order joint conditional probability density function
f (i, j, d, a), which is computed by counting all pairs of pixels at distance d having grey-levels i and j23
at a given direction a. The angular displacement of d = 1 corresponds to four discrete directions at 0◦,
45◦, 90◦ and 135◦.25

LetM
Bj(k)

Ci
(a)be a co-occurrence matrix estimated over a detail imageBj(k), j=1, 2, 3, k=1, 2, . . . , K ,

of the color channel Ci,i = 1, 2, 3, for a direction a. Four representative statistical features are estimated27
over each detail image Bj(k), j = 1, 2, 3, k = 1, 2, . . . , K , namely the angular second moment (f1),
the correlation (f2), the inverse difference moment (f3) and the entropy (f4) [36]. The resulting set of29
features that corresponds to the different color channels Ci is

F
Bj (k)

Ci
(a), i = 1, 2, 3, j = 1, 2, 3, k = 1, 2, . . . , K , (4)31

where F ∈ {f1, f2, f3, f4} and a ∈ {0◦, 45◦, 90◦, 135◦}.
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Fig. 5. LBP value estimation: LBP = 1 + 8 + 32 + 128 = 169 [37].

The CWC of a feature F between the detail images Bj(k), j=1, 2, 3, k=1, 2, . . . , K , of color channels1
Cl and Cm, l = 1, 2, 3, m = 1, 2, 3, is estimated as follows:

CWC
Bj (k)

Cl,Cm
= Cov(F

Bj (k)

Cl
, F

Bj (k)

Cm
), l�m. (5)3

3.2.4. Local binary pattern features
The LBP method has been proposed by Ojala et al. [37] as a two-level version of the texture spectrum5

method [38], which uses three levels (0, 1 and 2) for the representation of local texture patterns. The
LBP method utilizes 28 = 256 possible texture units instead of the 38 = 6561 units utilized in the texture7
spectrum method, leading to a more efficient representation of texture which results in a comparable
texture discrimination performance [39]. The local binary pattern of a 3 × 3-pixel neighborhood is9
estimated as follows:

(i) The original 3 × 3 neighborhood (Fig. 5a) is thresholded to two levels (0 and 1) using the value of11
the center pixel (Fig. 5b).

(ii) The values of the pixels in the thresholded neighborhood are multiplied by certain weights (Fig. 5c)13
assigned to the corresponding pixels.

(iii) The values of the eight pixels (Fig. 5d) are summed to obtain a single value for the corresponding15
pattern.

The LBP feature vectors are formed by histogram bins of the distribution of the LBP values in an image17
region.

3.2.5. Opponent color—local binary pattern features19
The OC–LBP has been proposed by Mäenpää et al. [30] and involves the application of the LBP

operator on each color channel separately. In addition, each pair of color channels is used in collecting21
opponent color patterns so that the center pixel for a neighborhood and the neighborhood itself are taken
from different color channels. In total, three intra-channel LBP histograms (one histogram for each color23
channel Ci, i=1, 2, 3) and six inter-channel histograms (for combinations of center-neighborhood pixels:
C1-C2, C2-C3, C3-C1, C2-C1, C3-C2 and C1-C3) are extracted and concatenated into a single distribution.25

3.3. Classification

A variety of classification algorithms have been proposed in the literature for the realization of intel-27
ligent medical applications, including linear discriminant analysis (LDA) [17,40], neural networks [41]
and SVMs [45]. The latter are binary classifiers that provide remarkably robust generalization perfor-29
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�

Fig. 6. A linear SVM solution to a linearly separable classification problem.

mance, even with sparse and noisy data. They resist to overfitting the training data and their classification1
performance is not easily affected by the magnitude of the features-to-samples ratio [42]. Moreover,
SVMs are less empirical as regards the determination of their parameters compared to standard neural3
networks and they have proved to be more accurate than other classifiers in many applications, including
the classification of textures [46] and CT colonography patterns [47].5

The training of the SVMs involves a quadratic programming optimization procedure which aims at the
identification of a subset of vectors from the training set, called support vectors. These vectors are utilized7
for the drawing of a separating hypersurface between two classes. In the case of linearly separable classes,
the support vector algorithm searches for the separating hyperplane which leads to the largest possible9
margin � between the two classes. A typical example in a two-dimensional feature space is illustrated
in Fig. 6. The solid line is the solution hyperplane, the margin � is the distance between the two parallel11
dashed lines, and the outlined black and white samples correspond to the support vectors.

Non-linear classification is based on the idea of injecting the data points into a higher-dimensional13
Hilbert space via some non-linear mapping �, and using the linear support vector algorithm there to
separate the training samples. The support vector algorithm in its general form, which includes the non-15
linear classification of non-linearly separable classes, proceeds as follows [42,43]:

Let I be an input space of vectors xi, i = 1, 2, . . . , N , distributed to two classes, which are labeled as17
yi ∈ {−1, 1}. Considering � being a non-linear mapping from the input space I ⊆ Rn to a Euclidean
space E, training the SVM results in a vector w and a scalar w0 of a hypersurface defined by the equation19

w�(x) + w0 = 0, (6)

so that the margin of separation between the two classes is maximized. It is easy to prove that for the21
maximal margin hypersurface,

w =
N∑

i=1

�iyi�
T(xi), (7)

23



UNCORRECTED P
ROOF

CBM621

ARTICLE IN PRESS
D.K. Iakovidis et al. / Computers in Biology and Medicine ( ) – 11

and w0 is estimated from the Karush–Kuhn–Tucker complementarity condition. The variables �i are1
Lagrange multipliers which are estimated by maximizing the Lagrangian

LD =
N∑

i=1

�i − 1

2

N∑
i=1

N∑
j=1

�i�j yiyjK(xi, xj ), (8)
3

with respect to �i . The vectors xi for which 0 < �i �c are the support vectors and c is a positive cost
parameter. As c increases a higher penalty for errors is assigned.5

The function K(xi, xj ) is known as kernel function and should satisfy Mercer’s condition [43]. It is
defined by the following inner product:7

K(xi, xj ) = �T(xi)�(xj ). (9)

Common choices include the linear and the Gaussian radial basis function (RBF) kernel, which are9
estimated by the following equations, respectively:

K(xi, xj ) = xixj , (10)11

K(xi, xj ) = e−‖xi−xj‖2/�, (11)

where � is a strictly positive constant. The Gaussian kernel performs usually better than other non-13
linear kernels, such as the polynomial, because it usually has a better boundary response as it allows for
extrapolation, and most high-dimensional data sets can be approximated by Gaussian- like distributions15
similar to those used by radial basis function networks [44]. Moreover, it involves only one parameter
(�), and thus facilitates the search for the optimal values of the SVM parameters.17

The hypersurface separating the two classes can be finally derived by the following equation:
∑

∀i:1� i �N,0<�i �c

�iyiK(xi, x) + w0 = 0. (12)
19

Given a test input vector x, the trained SVM produces an output value s which corresponds to the label
of the class it belongs to:21

s = sign


 ∑

∀i:1� i �N,0<�i �c

�iyiK(xi, x) + w0


 , (13)

where sign is a function that returns 1 for positive and −1 for non-positive input values.23
In the proposed system the SVMs implement the classification module which handles the classification

of the feature vectors xi , extracted from endoscopic video-frames, into normal or abnormal.25

4. Results

Extensive experiments were performed towards two directions. The first is the assessment of the27
accuracy of the proposed system in the detection of gastrointestinal adenomas. The second is the direction
of the determination of the most appropriate methods to be employed.29
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The experiments have been analyzed by applying receiver operating characteristic (ROC) analysis, as it1
evaluates the classification performance independent of the naturally occurring class distribution or error
cost [20,48]. An ROC graph represents on the x-axis the probability that the classification module regards3
the sample as abnormal when it is actually abnormal, and on the y-axis the probability that the sample
is abnormal when it is actually normal. The former is also known as true positive rate (or sensitivity),5
whereas the latter is also known as false positive rate (or one minus specificity). The ROC curve shows
how these two quantities vary together as the decision threshold varies. The area under the ROC curve7
(AUC) is used as a reliable measure of the classification accuracy [20].

The experiments were performed on a database of 60 colonoscopic and 26 gastroscopic videos from9
patients examined in the General Hospital of Athens “Laiko”, Medical School, University of Athens. All
polyps found during the endoscopic examinations went through biopsy and were histologically evaluated.11
The results of the histological evaluation were used as the gold standard for the evaluation of the proposed
system. As the experts suggested, mainly small size adenomas have been considered for the purposes of13
our study. Such polyps are not easily detectable, they are more common and are more likely to become
malignant compared to the hyperplastic polyps [1].15

The endoscopic video files were acquired by the endoscopists and saved in AVI format with a resolution
of 320 × 240-pixel frame dimensions, 24 bit color depth at a frame rate of 25 fps. The duration of each17
video was set at 10 s, which results in 250 frames.

For the purposes of our experiments, two training sets were formed from 40% of the frames comprising19
the available videos. The first set was built from 100 representative video-frames of each colonoscopic
video, and the second, from 100 representative video-frames of each gastroscopic video. In total, the21
corresponding training sets comprised 60 × 100 = 6000 colonoscopic and 26 × 100 = 2600 gastroscopic
video-frames, respectively. These frames were carefully selected by experts in gastroenterology and23
correspond to adenomas or normal tissue captured from different angles and illumination conditions. A
balanced proportion of normal and abnormal samples was extracted from these frames in a way that all25
abnormal samples were included and an equal number of normal samples was randomly selected. In [48],
it has been shown that learning from a balanced class distribution the classifiers generally come up with27
fewer but more accurate classification rules for the minority class than for the majority class. So, such an
approach is expected to enhance the classification of abnormal samples and thus increase the system’s29
sensitivity.

Apart from the training sets, two test sets were formed from the video-frames that were not included31
in the training sets, i.e. 250 − 100 = 150 frames (60%) from each video. The first test set comprised
150 × 60 = 9000 colonoscopic video-frames, and the second, 150 × 26 = 3900 gastroscopic video-33
frames. Each of these frames was raster scanned by the feature extraction module and all of the occurring
samples were used in the corresponding testing phase, regardless of the class they belong to. It should be35
explicitly stressed that the training and test sets have been chosen so that they do not overlap, and that
feature extraction was class-blind, so that the reliability of the presented results is ensured.37

The sampling of each frame was performed by the feature extraction module using a sliding window
of 32 × 32-pixel dimensions and a sliding step of 16 pixels, resulting in a total of 7 × 7 = 49 samples per39
frame. A 4-level DWFT was considered for the extraction of the WE, CWE and WCS features [18,27],
whereas a 1-level DWFT was applied for the extraction of the CWC features [17]. The LBP and OC–LBP41
histograms were quantized at 64-bins. The dimensions of the feature spaces produced by each feature
extraction method are presented in Table 1. These vectors were classified by employing both linear and43
non-linear Gaussian kernel functions (Eqs. (10)–(11)) in the classification module.
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Table 1
Dimensions of the feature spaces tested in the experiments

Feature space Dimension

WE 13
CWE 39
WCS 72
CWC 72
LBP 64
OC–LBP 576

The results that follow are organized into two parts in accordance with the data sets used in the1
experiments.

4.1. Detection of colonic adenomas3

The application of the proposed system on the colonoscopic data set using different combinations of
color models and feature extraction methods produced the average classification results illustrated in5
Fig. 7. A standard deviation of approximately 0.2% was estimated for the corresponding accuracies.

In the case of linear classification, the use of the K-L CWC features results in the highest classification7
accuracy (93.8%). The accuracy achived with the RGB OC–LBP features is also high, reaching 93.0%.
Although the LBP are nine times fewer than the OC–LBP features (Table 1), they lead to 92.0% accuracy.9
The introduction of non-linearity in the classification module affects positively the performance of all
feature sets but to a different extent. Most affected appears to be the accuracy of the wavelet energy11
features (WE, CWE and WCS). The WE features perform worst in all cases. The accuracy of the 64
LBP features remains close to the performance of the color–texture features, reaching 93.0%. The same13
accuracy is achieved with only 39 CWE features. The RGB OC–LBP, the K-L CWC and the K-L WCS
features perform best, resulting in 94.5%, 94.4% and 94.2% accuracy, respectively. These percentages15
could be considered comparable to each other, but the dimensionality of the feature spaces should also
be taken into account. Consequently, the OC–LBP features are not preferred, as they are approximately17
eight times more than the CWC or the WCS features (Table 1).

Expert endoscopists qualitatively evaluated the output videos produced by the proposed system. They19
validated that the CWC and the WCS feature extraction methods perform equivalently in the K-L color
space, leading to:

21
(a) accurate localization of the adenomas within the video-frames,
(b) tight markers surrounding the adenomas.23

It is worth noting that the rate of true positive markings counted in the test frames reached 98.8% and the
rate of false positive markings reached 1.4%. Four representative output video-frames produced using25
K-L CWC features are illustrated in Fig. 8. These frames were randomly selected from a total of 150
output frames (corresponding to 150 test input frames) of a colonoscopic video. Frames 4, 24, 33 and 9627
contain a small tubular adenoma that has been automatically detected and properly marked by the system.
Frame 33 does not contain any suspicious lesions, so the system did not produce any markers.29
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Fig. 7. AUCs obtained for the detection of colonic adenomas using (a) linear and (b) non-linear classification module.

Fig. 8. Output colonoscopic video-frames produced using K-L CWC features and non-linear classification.
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Fig. 9. AUCs obtained for the detection of gastric adenomas using (a) linear and (b) non-linear classification module.

4.2. Detection of gastric adenomas1

In the second part of the experiments the proposed system was applied for the detection of gastric
adenomas, under the previously described framework. The results are illustrated in Fig. 9. A standard3
deviation of approximately 0.3% was estimated for the corresponding accuracies.

Comparing Fig. 9 with Fig. 7 it can be noticed that the results are almost compatible. The K-L CWC5
features perform best in the case of linear classification leading to 93.2% accuracy. The non-linear
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Fig. 10. Output gastroscopic video-frames produced using K-L CWC features and non-linear classification.

classification module enhances the classification of the gastroscopic data in most cases and increases the1
accuracy achieved with the K-L CWC and the K-L WCS to comparable levels (94.3% vs 94.4%). The
WE features do not perform well (80.0%) even with non-linear classification module.3

The conclusions of the qualitative evaluation performed by the expert endoscopists on the gastroscopic
output videos are in agreement with the conclusions of the respective evaluation performed on the colono-5
scopic output videos. The rate of true positive markings counted in the test frames reached 97.8% and the
rate of false positive markings reached 1.7%. Fig. 10 illustrates a set of representative frames that were7
randomly selected from a total of 150 output video-frames produced using K-L CWC features. A smooth,
benign-appearing gastric polyp (close-up view), practically indistinguishable from hyperplastic polyps,9
was detected in frames 120, 152 and 186. This lesion surprisingly proved to be a tubular adenoma with
high-grade dysplasia on biopsy. In frame 189 no lesion appears, so the system did not draw any markers11
on it.

5. Conclusions13

We presented a novel intelligent system capable of supporting the medical decision for detection of
adenomas in gastrointestinal video. It aims to the enhancement of the endoscopist’s ability to accurately15
locate early stage adenomas, which may go undetected and evolve into malignant tumors. The system
exploits color and textural characteristics of the gastrointestinal epithelium that comprise the clinical17
findings, which are consequently quantified and used for the development of abstract, mathematically
described, decision rules within an SVM classification module.19

The results of the extensive experimentation using different color models, feature extraction methods,
linear and non-linear classification schemes lead us to the following clear conclusions:

21
• Textural characteristics of the colonic mucosa can be quantified by measuring texture under the context

of image analysis and for the first time color–texture analysis methodologies are successfully applied23
for automatic detection of gastric adenomas.

• In most of the feature spaces investigated, the use of the non-linear SVM kernel positively affects the25
discrimination of normal from abnormal samples. Depending on the feature extraction method used,
the non-linearity of the kernel function affects classification to a different extent. It could be argued that27
in the cases of OC–LBP and K-L CWC features the classes are almost linearly separable and that the
non-linear kernel SVM could be replaced by a simpler linear classifier at the cost of a slight decrease29
in accuracy. However, this could be reasonable under the framework of a non-medical application. In
medical applications, accuracy is crucial as it is associated with diagnosis and it concerns patients’31
health that can not be jeopardized at the cost of some more computations.
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• The optimal configuration of the proposed system includes RGB to K-L color transform in the pre-1
processing module, the CWC or WCS feature extraction module and a non-linear classification module.
In this paper the non-linearity in the classification module was introduced with the Gaussian func-3
tion in the SVM kernel. However, other non-linear kernels, such as the polynomial, could have also
worked. The determination or the development of new kernel functions that would optimally solve5
the gastrointestinal lesion detection problem is a challenging topic for future research.

• The utilization of standard low-resolution input, as it has been considered to meet the practical needs7
of the endoscopists, provides to the system an advantageous time performance over earlier approaches
utilizing frames of higher resolution [17]. The increase in time performance achieved for the lower9
resolution frames is attributed to the reduction of the computational cost which follows the application
of the feature extraction methods on a fewer population of windows per frame and/or the smaller11
window dimensions used. However, the population of windows per frame and the window size are
interdependent system parameters and their choice can affect the detection of the gastrointestinal13
lesions. Considering the window sampling scheme used in the experiments, a division of the frame
dimensions by N will result in an N2-times reduction of the computational cost. For example, di-15
viding the 1024 × 1024-pixel frame dimensions [17] by N = 8 (Fig. 2), a 64-times reduction of the
computational cost is achieved.17

• The accuracy of the system exceeds 94% as estimated with ROC analysis in the detection and location
of the gastrointestinal adenomas from endoscopic videos.19

Future perspectives of this work include further enhancement of the system’s accuracy by including
other input modalities such as shape information, clinical data, etc. Moreover, the implementation of a21
software–hardware architecture which will be capable of supporting video endoscopy in real-time seems
to be feasible as solutions have been proposed in the literature for the implementation of the feature23
extraction and the classification modules in hardware [49,50].

6. Summary25

Today 95% of all gastrointestinal carcinomas are believed to arise from adenomas. The early detection
of adenomas could prevent their evolution to cancer. In this paper we propose a novel intelligent system for27
automatic detection of gastric and colonic adenomas in endoscopic videos. It utilizes color–texture image
features and incorporates non-linear support vector machines (SVMs) to achieve improved detection29
accuracy compared to the linear classification scheme. The system focuses on the selection of a feature
extraction method appropriate for the analysis of low- rather than high-resolution video-frames. The31
advantages emanating from the adoption of such a method include processing time reduction, applicability
in telemedicine and less demanding hardware requirements. The assessment of the system’s performance33
is realized by means of receiver operating characteristics (ROC), which provide more reliable estimates
of accuracy compared to other measures. The results of the extensive experimentation on 60 colonoscopic35
and 26 gastroscopic videos, using different color models, feature extraction methods, linear and non-linear
classification schemes, led us to the conclusion that the proposed system can accurately detect, locate and37
mark the colonic and gastric adenomas within the endoscopic videos provided to its input. Its accuracy
exceeds 94% as estimated with ROC analysis.39
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