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Abstract

This paper presents a novel architecture for fast parallel computation of co-occurrence matrices in high throughput image analysis
applications for which time performance is critical. The architecture was implemented on a Xilinx Virtex-XCV2000E-6 FPGA using
VHDL. The symmetry and sparseness of the co-occurrence matrices are exploited to achieve improved processing times, and smaller,
flexible area utilization as compared with the state of the art. The performance of the proposed architecture is evaluated using input
images of various dimensions, in comparison with an optimized software implementation running on a conventional general purpose
processor. Simulations of the architecture on contemporary FPGA devices show that it can deliver a speedup of two orders of magnitude
over software.
� 2006 Elsevier B.V. All rights reserved.
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C1. Introduction

The co-occurrence matrix is a powerful statistical tool
which has proved its usefulness in a variety of image anal-
ysis applications, including biomedical [1,2], remote sensing
[3], quality control [4] and industrial defect detection sys-
tems [5]. It captures second-order grey-level information,
which is mostly related to human perception and the dis-
crimination of textures.

Although the computational complexity of the co-occur-
rence matrix for an image of N · N dimensions is only
O(N2), the processing power requirements for the compu-
tation of multiple co-occurrence matrices per time unit
can be prohibiting for the analysis of large image streams,
using software co-occurrence matrix implementations on
general purpose processors. Such demanding applications
include video analysis [1,6], content-based image retrieval
[7], real-time industrial applications [5] and high-resolution
multispectral image analysis [2].
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Field Programmable Gate Arrays (FPGAs) are low cost,
reconfigurable high density gate arrays capable of perform-
ing many complex computations in parallel while hosted by
conventional computer hardware [8]. Their features enable
the development of a hardware system dedicated to per-
forming fast co-occurrence matrix computations, thus
meeting the requirements of real-time image analysis appli-
cations. On the other hand, the Very Large Scale Integra-
tion (VLSI) architectures could be considered as
competitive alternatives [9]. However, they are not recon-
figurable and they involve high development cost and
time-consuming development procedures.

Within the first FPGA architectures, dedicated to
co-occurrence matrix computations, was the one presented
in [5,6] for the computation of two statistical measures of
the co-occurrence matrix. However, these measures were
being approximated, without needing to compute the
matrix itself. In a later work, Tahir et al. [2] developed
an FPGA architecture for the computation of 16 co-occur-
rence matrices in parallel. The implementation consider-
ations include symmetry, but do not include sparseness.
As a result, a large FPGA area is utilized even for small
input images.
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In this paper, we present a novel FPGA architecture for
parallel computation of 16 co-occurrence matrices that
exploits both their symmetry and sparseness to achieve
improved processing times and smaller, flexible area
utilization.

2. The co-occurrence matrix

The co-occurrence matrix of an N · N-pixel image I,
comprises of the probabilities Pd,h (i, j) of the transitions
from a grey-level i to a grey-level j in a given direction h
at a given intersample spacing d

P d;hði; jÞ ¼
Cd;hði; jÞ

PNg

i¼1

PNg

j¼1Cd;hði; jÞ
; ð1Þ

where Cd,h (i, j) = #{(m, n), (u, v) 2 N · N: f (m, n) = j,
f (u, v) = i, |(m, n) � (u, v)| = d, \((m, n), (u, v)) = h}, #
denotes the number of elements in the set, f (m, n) and
f (u, v) correspond to the grey-levels of the pixel located
at (m, n) and (u, v), respectively, and Ng is the total number
of grey-levels in the image [11]. In accordance with [2], we
choose Ng = 32 (5-bit representation).

The co-occurrence matrix can be regarded symmetric
if the distribution between opposite directions is ignored.
The symmetric co-occurrence matrix is derived as Pd,h

(i, j) = (Pd,h (i, j) + Pd,h (i, j)T)/2, where symbol T denotes
the transpose matrix. Therefore, the co-occurrence matrix
can be represented as a triangular structure without any
information loss, and h is chosen within the range of 0�
to 180�. Common choices of h include 0�, 45�, 90� and
135� [1,2,6,12]. Moreover, depending on the image dimen-
sions, the co-occurrence matrix can be very sparse, as the
number of grey-level transitions for any given distance
and direction, is bounded by the number of image pixels.
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3. Architecture

The presented architecture was developed in Very high
speed integrated circuits Hardware Description Language
(VHDL). It was implemented on a Xilinx Virtex-
XCV2000E-6 FPGA, which is characterized by 80 · 120
Configurable Logic Blocks (CLBs) providing 19,200 slices
(1 CLB = 2 slices). The device includes 160 256 · 16-bit
Block RAMs and can support up to 600 kbit of distributed
RAM. The host board, Celoxica RC-1000 has four 2 MB
static RAM banks. The RAM banks can be accessed by
the FPGA and the host computer independently, whereas
simultaneous access is prohibited by the board’s arbitra-
tion and isolation circuits.

An overview of the proposed FPGA architecture is illus-
trated in Fig. 1. The FPGA includes a control unit, four
memory controllers (one for each memory bank) and 16
Co-occurrence Matrix Computation Units (CMCUs). Up
to four input images of Ng grey-levels can be loaded in par-
allel to the available RAM banks. In accordance with [2], a
5-bit grey-level representation was used, i.e., Ng = 32.
However, in [2] each image is loaded into a corresponding
RAM bank using a 5-bit per pixel representation whereas
in the proposed architecture a 25-bit per pixel representa-
tion is used. Each pixel is represented by a vector a�= [ap,
a0, a45, a90, a135] that comprises of five 5-bit components,
namely, the grey-level ap of the pixel and the grey-levels
a0, a45, a90 and a135 of its neighboring pixels at 0�, 45�,
90� and 135� directions.

All FPGA functions are coordinated by the control unit
which generates synchronization signals for the memory
controllers and the CMCUs. The control unit also
handles communication with the host, by exchanging
control and status bytes, and requesting or releasing the
ownership of the memory banks. Each CMCU is used
FPGA architecture.
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for the computation of the co-occurrence matrix of an
image for a particular direction and distance.

3.1. Co-occurrence Matrix Computation Units

Three main objectives have been determined upon the
requirements of the proposed application, for the develop-
ment of a CMCU: (a) small FPGA area utilization to allow
for a potential expansion of the proposed architecture, (b)
high throughput of one result per cycle to achieve a high
per-clock performance and (c) low design complexity that
will contribute to achieving high operation frequency. To
meet these objectives we have considered various alterna-
tives for the implementation of the CMCUs. These include
the utilization of the existent FPGA BlockRAM arrays, the
implementation of standard sparse array structures that
store pairs of indices and values, and the implementation
of set-associative sparse arrays. The BlockRAM arrays
and the standard sparse array structures would not suffice
to meet all three objectives. The BlockRAM arrays would
lead to a larger area utilization compared with the sparse
implementations. The standard sparse arrays would result
in a lower throughput compared with the other two imple-
mentations, as the cycles needed to traverse the indices of
the array are proportional to its length. In comparison,
the set-associative arrays could be considered as a more
flexible alternative that can be effectively used for achieving
all our three objectives.

Fig. 2 illustrates a CMCU as implemented by means of
an n-way set-associative array of Nc cells and auxiliary cir-
cuitry which include n comparators, a n-to-log2n priority
encoder and an adder.
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Fig. 2. The co-occurrence matrix
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The set-associative arrays can be utilized for efficient
storage and retrieval of sparse matrices, ensuring a
throughput of one access per cycle with a latency of
four cycles. An n-way set-associative array consists of
n independent tag arrays (tags0 � tagsn�1) as illustrated
in Fig. 2. The tag-arrays are implemented in the
FPGA’s distributed RAM and each of them consists
of Nc/n cells. The set-associative array uniquely maps
an input pair of 5-bit grey-level intensities (i, j) into
an address of the Nc-cell data array. The data arrays
are implemented using FPGA Block RAMs, each of
which can hold up to 256 co-occurrence matrix ele-
ments. The data array cells contain the number of
occurrences of the respective (i, j) pairs. Each of these
pairs are represented by a single 10-bit integer k, result-
ing from the concatenation of i and j. This integer can
be considered to consist of two parts: the first is called
set (i, j) and comprises of the log2 (Nc/n) least significant
bits of k, whereas the second part is called tag (i, j) and
comprises of the 10-log2 (Nc/n) most significant bits of k.
The increment of a data array cell that corresponds to
an input pair (i, j) is implemented in four pipeline
stages:

Stage 1. The tag array cells located in the set (i, j) row are
retrieved and stored in temporary registers.

Stage 2. The values of the temporary registers values are
compared with tag (i, j).
185

computation
a. If a match is found the column number of the
matching tag is written in the offset register.

b. If there are not any matches the tag (i, j) is
stored in the tags array, at the first available
cell of the set (i, j) row.
unit (CMCU).
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Stage 3. The contents of both the offset register and
set (i, j) form an address a. The data array ele-
ment stored in a is read.

Stage 4. The value read in the previous cycle increases by
one and it is written back to a.

After all input pairs are read and processed the data
array will contain the co-occurrence matrix of the input
image.

4. Results

Experiments focusing to the evaluation of the time per-
formance and the area utilization of the proposed architec-
ture were performed using standard texture images from
the Brodatz album of 16 · 16, 32 · 32, 64 · 64, 128 · 128,
256 · 256 and 512 · 512-pixel dimensions (Fig. 3) [13].

Given a triangular co-occurrence matrix of Ng = 32, the
number of pixel pairs that can be considered for its compu-
tation in the case of a 16 · 16-pixel input image, is smaller
than the total number of co-occurrence matrix elements,
and reaches the number of all image pixels. Therefore,
the co-occurrence matrix will be sparse and Nc is set to a
maximum possible value of 16 · 16 = 256. In the case of
a 32 · 32-pixel or a larger input image, the co-occurrence
matrix is not considered sparse as the number of all possi-
ble pixel pairs that can be considered for its computation is
larger than the total number of its elements (i.e., 528).
Therefore, Nc is set to 528. It is worth noting that the effect
of sparseness in area utilization is amplified and becomes
more useful as Ng increases. For example, if Ng was set
at 64 or at 128 grey-levels, the co-occurrence matrix
could be considered sparse for images up to 32 · 32 or
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64 · 64-pixel dimensions, respectively. By following a grid
search approach for the determination of n, it was found
that the 16-way set-associative arrays (n = 16) result in
the optimal tradeoff between time performance and area
utilization.

The proposed architecture, as implemented on the
Xilinx Virtex-XCV2000E-6 FPGA, operates at 38.4 MHz
and utilizes only 39% of the FPGA area for 16 · 16 input
images, where the sparseness of the co-occurrence matrices
is exploited. The use of larger input images results in
approximately the same operating frequency reaching
38.2 MHz and a larger area utilization of 45%. In compar-
ison, the architecture proposed in [2] operates at 50 MHz
and utilizes a larger area percentage (59%) on an FPGA
of the same type, for the same Ng, regardless of the image
dimensions. The time performance reported in [2] for the
computation of a total of 64 co-occurrence matrices in
512 · 512-pixel 16-band multispectral images was
6.3 · 105 ls. For the same computations, the proposed
architecture requires 28.041 · 4 = 1.1 · 105 ls (Table 1),
which can be interpreted in approximately 500% reduction
of the processing time. This improvement in time perfor-
mance is mainly attributed to the use of vectors �a for the
retrieval of five pixels in one cycle instead of the five cycles
required in the per pixel retrieval used in [2].

Even though the implementation of the proposed archi-
tecture was based on the Xilinx Virtex-XCV2000E-6
FPGA, we run several simulations on state of the art
FPGA devices, such as Virtex-XCV2000E-8 (19200 slices),
Virtex2-XC2V6000-6 (33792 slices) and Spartan3-
XC3S4000-5 (27648 slices). The processing times achieved
for the computation of 16 co-occurrence matrices in hard-
ware and software, respectively, are presented in Table 1.

Software processing times were measured using an
MMX optimized software implementation developed in
C programming language and executed on an Athlon
XP2700+ processor. The optimizations were based on the
guidelines suggested by Intel and AMD [14,15]. These
include contiguous arrays allocation for improving CPU
caching performance, system call overhead reduction by
allocation of static arrays for data used iteratively within
the program, usage of efficient C library functions such
as memset() and memcpy(), and vectorization of several
functions using the MMX instruction set [16]. Additional
code fine-tuning includes code rearrangement for breaking
dependencies in tight loops, dereferencing of commonly
used pointers and reduction of the function call overhead
using inline functions.

The results reveal the superior performance of the hard-
ware implementations of the proposed architecture over
the software implementation. The speedup factors achieved
in hardware vary depending on the FPGA model used. The
minimum speedup is approximately 20 in the case of
XCV2000E-6 for 512 · 512 images, whereas it exceeds
100 in the case of XC2V6000-6 for 16 · 16 images. The var-
iance in speedup is mainly attributed to the different fre-
quencies of the various FPGA models and does not
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Table 1
Processing times (ls) achieved for various input image dimensions using various FPGA devices, and software

Implementation Frequency (MHz) Image dimensions (pixels)

16 · 16 32 · 32 64 · 64 128 · 128 256 · 256 512 · 512

Processing times (ls)
Hardware

XCV2000E-6 38 30 113 442 1756 7013 28,041
XCV2000E-8 51 22 83 323 1283 5123 20,483
XC3S4000-5 72 15 59 230 915 3653 14,606
XC2V6000-6 83 13 51 198 788 3149 12,590

Software
Athlon XP 2700+ 2167 1371 3247 10,018 36,320 143,600 562,080
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correlate with the sparseness of the co-occurrence matrix,
which mainly affects the area utilization. In Table 1 it can
be observed that the increase in processing times as the
image dimensions increase by two is not exactly divided
by four, as it would have been expected by the quadrupli-
cation of the image pixels. This is explained by the constant
time period spent for resetting the FPGA circuit.

5. Conclusions

We presented a novel FPGA architecture which is
capable of performing fast parallel co-occurrence matrix
computations in grey-level images. It performs better
than the state of the art FPGA architecture presented
in [2]. The proposed architecture and the architecture
in [2] have two main differences pinpointed to the input
data format and the co-occurrence matrix representation.
The vector representation of the input image pixels and
the use of set-associative arrays for the sparse representa-
tion of the co-occurrence matrix result in a higher time
performance and smaller area utilization respectively.
Its advantageous time performance compared with the
architecture in [2] and with an optimized software imple-
mentation for general purpose processors, makes it
appealing for use in high throughput applications. More-
over, the smaller FPGA area it utilizes, allows for the
exploitation of the remaining area for other tasks, such
as the computation of co-occurrence matrix features
[11], or the computation of more co-occurrence matrices
in parallel, if the host board is equipped with more
RAM banks.

It is worth noting that the computation of co-occurrence
matrices in conjunction with feature extraction in the same
FPGA design still remains a challenge. In [2], two different
FPGA designs, one for the computation of co-occurrence
matrices and one for the feature extraction, are inter-
changeably configured on a single FPGA.

Within our future perspectives are the extension of the
current architecture for efficient on-chip extraction of mul-
tiple textural features from grey-level and colour images, in
the same FPGA design, and its integration in a complete,
hardware/software system with real-time video analysis
capabilities.
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