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Abstract 

This paper presents a novel deformable model for 

accurate delineation of regions of interest in medical 

images that contain regional inhomogeneities. Such 

images are common in various medical imaging 

domains including endoscopy and radiology. The 

proposed model improves the Active Contour Without 

Edges (ACWE) model by excluding sparse regional 

inhomogeneities from both the foreground and the 

background of the images to be segmented. The 

proposed model is tolerant to noise and allows for the 

delineation of multiple objects. Experiments were 

performed on both endoscopic and ultrasonic images 

from different organs. The results show that the 

proposed model can be effectively utilized for the 

delineation of abnormal tissue findings, and in 

presence of regional inhomogeneities it can be more 

accurate compared with the ACWE model. 

1. Introduction 

Medical image segmentation has been the focus of 

image analysis and pattern recognition research since 

the early beginnings of the seventies [1]. Since then a 

variety of relevant computational approaches have 

been proposed, many of which have been reviewed in 

[3]-[6]. Recent approaches that have been efficiently 

utilized for the recovery of shapes of the human body 

include the level set deformable models [5]-[6].  

Deformable models are capable of recovering the 

shape of objects in images by following a contour 

deformation process. The deformation is realized by 

the minimization of an energy functional designed so 

that its local minimum is reached at the target 

boundaries. The energy functional in its basic form 

comprises a term that controls the smoothness of the 

contour and an image dependent term that forces the 

contour towards the boundaries of the objects. The 

level set approach to deformable models is more 

flexible compared to other approaches because it 

allows for topological changes of the contour during 

its evolution and is therefore capable of detecting 

multiple objects in an image.  

State of the art level set deformable models include 

the Active Contour Without Edges (ACWE) model [7]. 

In this model the deformation of the contour is derived 

from the minimization of a reduced form of the 

Mumford-Shah energy functional [8], where the 

segmented image is restricted to two piecewise 

constant regions outside and inside the contour. The 

ACWE model does not utilize any edge related 

information, thus leading to noise tolerant image 

segmentation. Recent medical imaging applications of 

ACWE have demonstrated its advantageous 

performance over other relevant methods [9]-[10]. 

However, the assumption of piecewise constant 

regions outside and inside the contour is violated in the 

presence of regional inhomogeneities, which usually 

appear as single or multiple intensity spikes. Such 

inhomogeneities may be attributed either to the 

characteristics of the tissue being examined, or to 

external causes usually related to the imaging devices 

used.  

Surpassing the aforementioned limitation of the 

ACWE model could possibly result in the 

enhancement of its segmentation performance in 

medical images with regional inhomogeneities. To 

reach this aim, we introduce a novel, improved 

deformable model that assumes piecewise constancy 

over regions outside and inside the contour that 

excludes sparse regional inhomogeneities. Its 

performance is evaluated for the delineation of 

abnormal tissue findings in various endoscopic and 

ultrasonic medical images with regional 

inhomogeneities, from different organs. 

The rest of this paper comprises three sections. 

Section 2 describes the proposed model in contrast to 

the ACWE model. Experimental results are presented 

in Section 3, and finally Section 4 summarizes the 

conclusions of this study.  
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2. Level Set Deformable Models 

2.1. The Active Contour Without Edges model 

The ACWE model as posed in [11] has the form of 

a minimization problem: Let  be a bounded open 

subset of 
2R  and  its boundary. We seek for the 

infimum of the energy functional ),,( CccF ,
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where Ru :0  is the input image, 2]1,0[:)( RsC
is a piecewise parameterized curve, c  and c
represent the average value of 0u  inside and outside 

the curve and parameters 0  and 0, 21  are 

weights for the regularizing term and the fitting terms, 

respectively.  

In the level set method, C  is represented by 

the zero level set of a function ,: R  such that 
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The average foreground (inside the contour) and 

background (outside the contour) intensities 1c  and 2c

are determined by 
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where H is the Heaviside function. By keeping 1c  and 

2c  fixed, and minimizing F  with respect to , the 

associated Euler-Langrange equation for  is deduced. 

Finally,  is determined by parameterizing the descent 

direction by an artificial time 0t , and by solving the 

following equation 
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where  is the one-dimensional Dirac measure and 

),(),,0( yxt .

2.2. The proposed deformable model 

The proposed model considers sparse foreground 

and background regions which exclude the regional 

inhomogeneities. This is achieved by properly 

transcribing Eqs. (3)-(4). 

We introduce two difference terms in the 

foreground and the background average intensities, 

defined by the following equation: 

)),(()),((),( yxHayxHyx ii , i = 1, 2   (6)

where 01  and 02  are application dependent 

constants, determined so that ],0[ 1a  and ]0,[ 2a  define 

the acceptable ranges of ),( yx  for a point ),( yx  to 

be included in the sparse foreground and background 

region, respectively. Equation (6) implies that the 

points ),( yx  for which ),( yx  does not belong in 

the acceptable range result in 0),( yxi . These 

points correspond to intensity inhomogeneities and 

cause abrupt changes of , resulting in 
)),(()),(( yxHayxH i .

Moreover, we assume that the initial contour as 

traced by 0 , corresponds to a user defined region of 

interest and we employ )( 0H to restrict the 

calculation of the average foreground and background 

intensities 1c  and 2c  over this region. The Eqs. (3) 

and (4) are transcribed as follows 
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According to these, a point ),( yx  will not be 

included in the calculation of 1c  and 2c  if 
0),( yxi .

3. Results 

A number of experiments were performed aiming to 

the assessment of the proposed model for the 

segmentation of medical images with regional 

inhomogeneities, in comparison with the original 

ACWE model. The delineation of abnormal tissue 

findings was identified as a common application 

context to focus the experiments on. The delineation of 

abnormal tissue masses for accurate recovery of their 

shape is important in medical diagnostics and in many 
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cases it is regarded as a malignancy risk factor [12]-

[13].  

A diverse dataset comprising of 38 medical images 

with regional inhomogeneities was utilized, including 

endoscopic images of gastric ulcers and ultrasound 

images of parotid tumors and thyroid nodules (Table 

1). The images were digitized at 256 256-pixel 

dimensions and 8-bit grey level depth. Both 1 and 2

were empirically determined for the different kinds of 

images.    

The quantification of the segmentation results was 

realized by measuring the overlap v between the region 

specified by the active contour models and the ground 

truth image region G was specified by three experts 

GA

GA
v    (9) 

Table 1. Datasets used in the experiments per subject 
and segmentation accuracy using ACWE and the 
proposed model, with respect to ground truth 
segmentations. 

Subject Images ACWE 
v (%)  

Proposed 
v (%)  

Gastric Ulcers 12 91.7 1.2 93.4 0.9

Parotid Tumors 6 83.8 2.6 91.0 2.4

Thyroid Nodules 20 85.9 2.1 91.6 1.4

The segmentation results obtained with the ACWE 

and with the proposed improved model are 

summarized in Table 1. Figure 1 illustrates two 

indicative images used in the experiments. The first 

image (Fig. 1a) illustrates an endoscopic image of a 

benign gastric ulcer, with regional inhomogeneities 

attributed to the tissue’s relief and the reflected light 

from the endoscope’s illumination source (Fig. 1c). 

The overlap obtained with ACWE and with the 

proposed model is 96.4% ( =650, 1 =1 and 2 =1,

Fig. 1e) and 98.1% ( =650, 1 =1, 2 =1, 1=-10-12

and 2 =10-12, Fig. 1g), respectively.  

The second image (Fig. 1b) illustrates an ultrasound 

image of a parotid gland adenoma. The regional 

inhomogeneities in the ultrasound images are related to 

speckle, noise and the echogenicity of the examined 

tissue (Fig. 1d). The overlap obtained with the ACWE 

is 88.4% ( =650, 1 =5 and 2 =5, Fig. 1f) whereas 

the overlap achieved with the proposed model is much 

higher reaching 94.2% ( =650, 1 =5, 2 =5, 1 =-

10-13 and 2 =10-13 , Fig. 1h). It is worth noting that the 

difference in the overlap obtained with the ACWE and 

the proposed model in the second image is larger than 

in the first image. This can be explained, as the 

inhomogeneity inside and outside the abnormal tissue 

in the second image is larger. The local variance ( 2),

as a measure of   inhomogeneity [14], inside and 

outside of  the  abnormal tissue but within the region 

of interest, in the second image is by 27.9% and 20.7% 

larger than in the first image respectively. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 1. Medical images with regional inhomogeneities 

and segmentation results (a) endoscopic image of a 

benign gastric ulcer, (b) ultrasonic image of a parotid 

gland adenoma, (c-d) scaled images revealing the 

regional inhomogeneities inside and outside the 

abnormal tissue masses, (e-f) segmentation using 

ACWE model, (g-h) segmentation using the proposed 

model. 
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Similar observations are valid with respect to the 

average overlaps obtained between the endoscopic and 

ultrasound image classes. 

The overlap differences observed in favor of the 

proposed model was significant (p<0.05) as validated 

by ANOVA (ANalysis Of VAriance), a statistical test 

for the heterogeneity of means by analysis of group 

variances [14]. 

4. Conclusions 

We have introduced a novel, improved deformable 

model based on the ACWE model. The new model 

assumes piecewise constancy over sparse regions 

outside and inside the active contour. We applied it for 

the segmentation of medical images with regional 

inhomogeneities. The results show that in such images 

the proposed model outperforms ACWE in the 

delineation of abnormal tissue masses. The 

enhancement of the segmentation quality has been 

reported higher in images with more prevalent 

inhomogeneities inside and outside the abnormal 

tissue. 

Future work includes a systematic evaluation of the 

proposed model on larger datasets of medical images 

acquired on regular basis, investigation of automatic 

parameter tuning approaches and the integration of the 

proposed model in a medical decision support system. 

Acknowledgments 

We would like to thank EUROMEDICA S.A. 

Greece for the provision of part of the medical images. 

We would also like to express our gratitude to Dr. N. 

Dimitropoulos, M.D., Radiologist, and Prof. M. 

Tzivras, M.D., Gastroenterologist for sharing their 

expertise in the interpretation of the medical images. 

This research was funded by the Operational Program 

for Education and Vocational Training (EPEAEK II) 

under the framework of the project “Pythagoras - 

Support of University Research Groups” co-funded by 

75% from the European Social Fund and by 25% from 

national funds. 

References 

[1] J. Sklansky, and D. Ballard, “Tumor Detection in 

Radiographs,” Computer and Biomedical Research, vol. 

6, no. 4, pp. 299-321, Aug. 1973. 

[2] N. Kalouptsidis, Signal Processing Systems: Theory and 

Design, J. Wiley & Sons, NY, 1997. 

[3] J.S. Duncan, and N. Ayache N., “Medical Image 

Analysis: Progress Over Two Decades and The 

Challenges Ahead,” IEEE Trans. Pattern Analysis 

Machine Intelligence, vol. 22, pp. 85-106, 2000. 

[4] D. L. Pham, C. Xu, and J. L. Prince, "Current Methods 

in Medical Image Segmentation," Annual Review of 

Biomedical Engineering, vol. 2, pp. 315-338, 2000. 

[5] J.S. Suri et al, “Shape Recovery Algorithms Using 

Level Sets in 2-D/3-D Medical Imagery: A State-of-the-

Art Review”,  Trans. on Inf. Tec. in Biomedicine, 

vol. 6, no. 1, pp. 8-28, Mar. 2002. 

[6] T. McInerney, and D. Terzopoulos, “Deformable 

Models in Medical Image Analysis: A Survey,” Med 

Image Analysis 1996;1:91-108. 

[7] T.F. Chan, L.A. Vesse, “Active Contours Without 

Edges”, IEEE Trans. Image Processing, vol. 7, pp. 266-

277, Feb. 2001. 

[8] D. Mumford, J. Shah, “Optimal Approximation by 

Piecewise Smooth Functions and Associated Variational 

Problems”, Commun.Pure Appl. Math., vol.42, pp 577-

685, 1989. 

[9] E.D. Angelini, T. Song, B.D. Mensh, A.F. Laine, 

Segmentation and quantitative evaluation of brain MRI 

data with a multi-phase three-dimensional implicit 

deformable model, SPIE International Symposium, 

Medical Imaging 2004, San Diego, CA USA, Vol. 

5370, pp. 526-537, 2004, 2004. 

[10] N. Lin, W. Yu, J.S. Duncan, “Combinative Multi-scale 

Level Set Framework for Echocardiographic Image 

Segmentation,” Medical Image Analysis, vol. 7, pp. 

529-537, 2003. 

[11] T.F. Chan, and L.A. Vese, “Active Contour and 

Segmentation Models Using Geometric PDE's for 

Medical Imaging in Malladi, R. (Ed.), “Geometric 

Methods in Bio-Medical Image Processing”, Series: 

Mathematics and Visualization, Springer, pp. 63-75, 

2002.

[12] S. H. Itzkowitz, Y. S. Kim, Sleisinger & Fordtran's 

gastrointestinal and liver disease, 6th ed., vol. 2, 

Philadelphia, WB Saunders Company, 1998. 

[13] E. Koike et al, “Ultrasonographic Characteristics of 

Thyroid Nodules: Prediction of Malignancy”, Archives 

of Surgery, vol. 136, pp. 334-337, 2001. 

[14] S. Theodoridis, and K. Koutroumbas, “Pattern 

Recognition”, Academic Press, 1998. 

0-7695-2521-0/06/$20.00 (c) 2006 IEEE


